User Documentation for ARKODE v5.7.0
SUNDIALS v6.7.0

Daniel R. Reynolds!, David J. Gardner?, Carol S. Woodward?, Rujeko Chinomona?®, and Cody J. Balos?
' Department of Mathematics, Southern Methodist University
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

3Department of Mathematics, Temple University

December 18, 2023

aials

<
S

(Vo)

LLNL-SM-668082

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan
Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M.
Yang.

Contents

1 Introduction 3
1.1 Changes from previous Versions v v v it it e e e e e 4
1.2 Reading this User Guide e 28
1.3 SUNDIALS License and Notices o o v ittt e ettt e e e 29
2 Mathematical Considerations 31
2.1 Adaptive single-stepmethods L e 32
2.2 Interpolation e e e e e e e e e e e e e e 32
2.3 ARKStep — Additive Runge—Kuttamethods o 34
2.4 ERKStep — Explicit Runge—Kuttamethods 35
2.5 SPRKStep — Symplectic Partitioned Runge—Kutta methods 36
2.6 MRIStep — Multirate infinitesimal stepmethods oL oL 37
2.7 EITOrNOTMS . . . o v vt e et e e e e e e e e e e e e e 39
2.8 Time step adaptivity L L e e e e e e e e e e e e 39
2.9 Explicitstability e 41
2.10 Fixed time Stepping o v i e e e e e e e e e e e e e e e e e e 42
2.11 Algebraic sOlVers oL e e e e e 42
2.12 Rootfinding e e e e e e e e e e e e 52
2.13 Inequality Constraints o o i e e e e e e e e e e e e e e e 53
2.14 Relaxation Methods e 54
3 Code Organization 55
3.1 ARKODE organization i e e e e e e e e e e e e 55
4 Using SUNDIALS 59
4.1 The SUNContext TYPe o o v e i i e e e e e e e e e e e e e e 59
4.2 SUNDIALS Status Logging o 64
4.3 Performance Profiling L 68
4.4 SUNDIALS Version Information e 71
4.5 SUNDIALS Fortran Interface o e 72
4.6 Features for GPU Accelerated Computing o v v i it e e e e e 80
5 Using ARKODE 83
5.1 Accesstolibrary and header files 83
5.2 Using the ARKStep time-stepping module, 87
5.3 Using the ERKStep time-steppingmodule e 187
5.4 Using the SPRKStep time-stepping module 229
5.5 Using the MRIStep time-steppingmodule 0oL oo 248
5.6 User-supplied functions e 307
6 Butcher Table Data Structure 323
6.1 ARKodeButcherTable functions L 324

7 SPRK Method Table Structure

7.1

ARKodeSPRKTable functions o e e e e e e

Vector Data Structures

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

Description of the NVECTOR Modules o it
Description of the NVECTOR operations it i ittt et
NVECTOR functions required by ARKODE
The NVECTOR_SERIAL Module e i
The NVECTOR_PARALLEL Module
The NVECTOR_OPENMP Module o i
The NVECTOR_PTHREADS Modulet
The NVECTOR_PARHYPModule
The NVECTOR_PETSC Module et
The NVECTOR_CUDA Modulettt e e e e e e
The NVECTOR_HIP Module e
The NVECTOR_SYCL Module e e e e e
The NVECTOR_RAJA Module e e e et
The NVECTOR_KOKKOS Module e e
The NVECTOR_OPENMPDEV Module
The NVECTOR_TRILINOS Module i
The NVECTOR_MANYVECTOR Module
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module e i
NVECTOR Examples o e e

Matrix Data Structures

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Module i
The SUNMATRIX_MAGMADENSEModule
The SUNMATRIX_ONEMKLDENSEModule
The SUNMATRIX_BAND Module o e
The SUNMATRIX_CUSPARSE Module
The SUNMATRIX_SPARSEModule i
The SUNMATRIX_SLUNRLOC Module i
The SUNMATRIX_GINKGO Module i
The SUNMATRIX_KOKKOSDENSE Module
SUNMATRIX Exampleso e
SUNMATRIX functions used by ARKODE

10 Linear Algebraic Solvers

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

The SUNLinearSolver APL e e e e e
ARKODE SUNLinearSolverinterface . e
The SUNLinSol Band Module e
The SUNLinSol_Dense Module e e
The SUNLinSol_KLU Module e e e e e e e e e
The SUNLinSol_LapackBand Module
The SUNLinSol_LapackDense Module
The SUNLinSol_MagmaDense Module
The SUNLinSol_OneMklDense Module o i i e i i i e

10.10 The SUNLinSol_PCG Module e e e e e e e s s e
10.11 The SUNLinSol_SPBCGS Module it e e e e e e e
10.12 The SUNLinSol_SPFGMR Module e e e e
10.13 The SUNLinSol_SPGMR Module e e e e e e

ii

10.14 The SUNLinSol_SPTFQMR Module
10.15 The SUNLinSol_SuperLUDIST Module it
10.16 The SUNLinSol_SuperLUMT Module
10.17 The SUNLinSol_cuSolverSp_batchQR Module
10.18 The SUNLINEARSOLVER_GINKGO Module
10.19 The SUNLINEARSOLVER_KOKKOSDENSE Module
10.20 SUNLinearSolver Examples o 0 0 i e e e e e e e e e e e

11 Nonlinear Algebraic Solvers
11.1 The SUNNonlinearSolver APT e e
11.2 ARKODE SUNNonlinearSolver interface ittt
11.3 The SUNNonlinSol_Newton implementation,
11.4 The SUNNonlinSol_FixedPoint implementation
11.5 The SUNNonlinSol_PetscSNES implementation

12 Time Step Adaptivity Controllers
12.1 The SUNAdaptController APT
12.2 The SUNAdaptController_Soderlind Module
12.3 The SUNAdaptController_ImExGus Module

13 Tools for Memory Management
13.1 The SUNMemoryHelper API
13.2 The SUNMemoryHelper_Cuda Implementation
13.3 The SUNMemoryHelper_Hip Implementation
13.4 The SUNMemoryHelper_Sycl Implementation

14 Installation Procedure
14.1 CMake-based installation e e e e e
14.2 Installed libraries and exported header files

15 Appendix: ARKODE Constants

16 Appendix: Butcher tables
16.1 Explicit Butchertables e
16.2 TImplicit Butchertables o e e e e e e e
16.3 Additive Butcher tables e
16.4 Symplectic Partitioned Butcher tables o oL oo

17 Release History
Bibliography

Index

593

599
600
618
637
637

641

643

649

iii

User Documentation for ARKODE, v5.7.0

This is the documentation for ARKODE, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge—Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKODE solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations in
serial, using shared-memory parallelism (e.g., via OpenMP, CUDA, Raja, Kokkos) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKODE is written in C, with C++ and Fortran interfaces.

ARKODE is developed by Southern Methodist University and Lawrence Livermore National Security, with support
by the US Department of Energy, Office of Science.

Contents 1

https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/casc/sundials/description/description.html#descr_cvode
https://www.smu.edu
https://www.llnl.gov
http://www.doe.gov
https://www.energy.gov/science/office-science

User Documentation for ARKODE, v5.7.0

2 Contents

Chapter 1

Introduction

The ARKODE infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKODE itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKODE is packaged with four time-stepping modules, ARKStep, ERKStep, SPRKStep, and
MRIStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

M)y =Pty + 1 (ty), ylto) = o, (1.1)

where ¢ is the independent variable, y is the set of dependent variables (in R™V), M is a user-specified, nonsingular
operator from R to R”, and the right-hand side function is partitioned into up to two components:

 fE(t,y) contains the “nonstiff” time scale components to be integrated explicitly, and
s f1(t,y) contains the “stiff”” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge—Kutta methods. Such methods are defined
through combining two complementary Runge—Kutta methods: one explicit (ERK) and the other diagonally implicit
(DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components (1.1), such
methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed stiff/nonstiff
systems of ordinary differential equations. A key feature allowing for high efficiency of these methods is that only
the components in £ (¢, 3y) must be solved implicitly, allowing for splittings tuned for use with optimal implicit solver
algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKODE is
packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit methods
of orders 2-9, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 2-5.

ERKStep focuses specifically on problems posed in explicit form,

v =f(ty), y(to) = Yo- (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge—Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-9.

SPRKStep focuses on Hamiltonian systems posed in the form,

H(t,p,q) =T(t,p) +V(tq)

User Documentation for ARKODE, v5.7.0

aV (t,) oT'(t,
p:fl(tq):#v q:fQ(tap):%a (13)

allowing for conservation of quadratic invariants.

MRIStep focuses specifically on problems posed in additive form,

where here the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff”” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff’ components of the system (this will be integrated using an implicit method and
a large time step 7°), and

 fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step A" < h°).

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step (MIS), multirate infinitesimal
GARK (MRI-GARK), and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods, allowing for evolution of the
problem (1.4) using multirate methods having orders of accuracy 2-4.

For ARKStep or MRIStep problems that include nonzero implicit term f (¢, y), the resulting implicit system (assumed
nonlinear, unless specified otherwise) is solved approximately at each integration step, using a SUNNonlinearSolver
module, supplied either by the user or from the underlying SUNDIALS infrastructure. For nonlinear solver algorithms
that internally require a linear solver, ARKODE may use a variety of SUNLinearSolver modules provided with SUN-
DIALS, or again may utilize a user-supplied module.

1.1 Changes from previous versions

1.1.1 Changes in v5.7.0

Added the SUNAdaptController base class, ported ARKODE’s internal implementations of time step controllers
into implementations of this class, and updated ARKODE to use these objects instead of its own implementations.
Added ARKStepSetAdaptController() and ERKStepSetAdaptController() routines so that users can modify
controller parameters, or even provide custom implementations.

Added the routines ARKStepSetAdaptivityAdjustment () and ERKStepSetAdaptivityAdjustment (), that al-
low users to adjust the value for the method order supplied to the temporal adaptivity controllers. The ARKODE default
for this adjustment has been —1 since its initial release, but for some applications a value of 0 is more appropriate. Users
who notice that their simulations encounter a large number of temporal error test failures may want to experiment with
adjusting this value.

Added the third order ERK method ARKODE_SHU_OSHER_3_2_3, the fourth order ERK method ARKODE_SOFRONIOQU_-
SPALETTA_5_3_4, the sixth order ERK method ARKODE_VERNER_9_5_6, the seventh order ERK method ARKODE_-
VERNER_10_6_7, the eighth order ERK method ARKODE_VERNER_13_7_8, and the ninth order ERK method ARKODE_ -
VERNER_16_8_9.

ARKStep, ERKStep, MRIStep, and SPRKStep were updated to remove a potentially unnecessary right-hand side eval-
uation at the end of an integration. ARKStep was additionally updated to remove extra right-hand side evaluations
when using an explicit method or an implicit method with an explicit first stage.

Improved computational complexity of SUNMatScaleAddI_Sparse from O(M*N) to O(NNZ).
Added Fortran support for the LAPACK dense SUNLinearSolver implementation.

Fixed a regression introduced by the stop time bug fix in v6.6.1 where ARKODE steppers would return at the stop time
rather than the requested output time if the stop time was reached in the same step in which the output time was passed.

4 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

Fixed a bug in ERKStep where methods with ¢, = 1 but a, ; # b; were incorrectly treated as having the first same as
last (FSAL) property.

Fixed a bug in ARKODE where ARKStepSetInterpolateStopTime () would return an interpolated solution at the
stop time in some cases when interpolation was disabled.

Fixed a bug in ARKStepSetTableNum() wherein it did not recognize ARKODE_ARK2_ERK_3_1_2 and ARKODE_-
ARK2_DIRK_3_1_2 as a valid additive Runge—Kutta Butcher table pair.

Fixed a bug in MRIStepCoupling_lWrite () where explicit coupling tables were not written to the output file pointer.

The MRIStepInnerStepper class in MRIStep was updated to make supplying an MRIStepInnerFullRhsFn() op-
tional.

Fixed scaling bug in SUNMatScaleAddI_Sparse for non-square matrices.
Changed the SUNProfiler so that it does not rely on MPI_WTime in any case. This fixes GitHub Issue #312.

Fixed missing soversions in some SUNLinearSolver and SUNNonlinearSolver CMake targets.

1.1.2 Changes in v5.6.2

Fixed the build system support for MAGMA when using a NVIDIA HPC SDK installation of CUDA and fixed the
targets used for rocBLAS and rocSPARSE.

1.1.3 Changes in v5.6.1

Updated the Tpetra NVector interface to support Trilinos 14.
Fixed a memory leak when destroying a CUDA, HIP, SYCL, or system SUNMemoryHelper object.

Fixed a bug where the stop time may not be cleared when using normal mode if the requested output time is the same
as the stop time. Additionally, this fix removes an unnecessary interpolation of the solution at the stop time that could
occur in this case.

1.1.4 Changes in v5.6.0

A new time-stepping module, SPRKStep, was added to ARKODE. This time-stepper provides explicit symplectic par-
titioned Runge-Kutta methods up to order 10 for separable Hamiltonian systems.

Added support for relaxation Runge-Kutta methods in ERKStep and ARKStep, see §2.14, §5.3.3, and §5.2.3 for more
information.

Added the second order IMEX method from [41] as the default second order IMEX method in ARKStep. The explicit
table is given by ARKODE_ARK2_ERK_3_1_2 (see §16.1.2) and the implicit table by ARKODE_ARK2_DIRK_3_1_2 (see
§16.2.2).

Updated the default ARKODE behavior when returning the solution when the internal time has reached a user-specified
stop time. Previously, the output solution was interpolated to the value of tstop; the default is now to copy the internal
solution vector. Users who wish to revert to interpolation may call a new routine ARKStepSetInterpolateStop-
Time (), ERKStepSetInterpolateStopTime(), or MRIStepSetInterpolateStopTime().

A potential bug was fixed when using inequality constraint handling and calling ARKStepGetEstLocalErrors() or
ERKStepGetEstLocalErrors () after a failed step in which an inequality constraint violation occurred. In this case,
the values returned by ARKStepGetEstLocalErrors() or ERKStepGetEstLocalErrors () may have been invalid.

Updated the F2003 utility routines SUNDIALSFileOpen() and SUNDIALSFileClose () to support user specification
of stdout and stderr strings for the output file names.

1.1. Changes from previous versions 5

https://github.com/LLNL/sundials/issues/312

User Documentation for ARKODE, v5.7.0

1.1.5 Changes in v5.5.1

Added the functions ARKStepClearStopTime (), ERKStepClearStopTime (), and MRIStepClearStopTime () to
disable a previously set stop time.

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.
Fixed compilation errors in some SYCL examples when using the icx compiler.

The default interpolant in ARKODE when using a first order method has been updated to a linear interpolant to en-
sure values obtained by the integrator are returned at the ends of the time interval. To restore the previous behavior
of using a constant interpolant call ARKStepSetInterpolantDegree(), ERKStepSetInterpolantDegree(), or
MRIStepSetInterpolantDegree () and set the interpolant degree to zero before evolving the problem.

1.1.6 Changes in v5.5.0

Added the functions ARKStepGetJac(), ARKStepGetJacTime(), ARKStepGetJacNumSteps(), MRIStepGet-
Jac(), MRIStepGetJacTime (), and MRIStepGetJacNumSteps() to assist in debugging simulations utilizing a
matrix-based linear solver.

Added support for the SYCL backend with RAJA 2022.x.y.
Fixed an underflow bug during root finding.

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats () function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added support for CUDA v12.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

Fixed an implicit conversion error in the Butcher table for ESDIRK5(4)7L[2]SA2.

1.1.7 Changes in v5.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

6 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

1.1.8 Changes in v5.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections §9.10 and §10.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §8.14, §9.11, and §10.19 for more information.

Added the functions ARKStepSetTableName (), ERKStepSetTableName (), MRIStepCoupling_LoadTableBy-
Name (), ARKodeButcherTable_LoadDIRKByName (), and ARKodeButcherTable_LoadERKByName () to load a ta-
ble from a string.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed memory leaks/out of bounds memory accesses in the ARKODE MRIStep module that could occur when attaching
a coupling table after reinitialization with a different number of stages than originally selected.

1.1.9 Changes in v5.3.0

Added the functions ARKStepGetUserData(), ERKStepGetUserData(), and MRIStepGetUserData() to retrieve
the user data pointer provided to ARKStepSetUserData (), ERKStepSetUserData (), and MRIStepSetUserData(),
respectively.

Fixed a bug in ERKStepReset (), ERKStepReInit(), ARKStepReset (), ARKStepReInit (), MRIStepReset(),
and MRIStepReInit () where a previously-set value of zstop (from a call to ERKStepSetStopTime (), ARKStepSet-
StopTime (), or MRIStepSetStopTime (), respectively) would not be cleared.

Updated MRIStepReset () to call the corresponding MRIStepInnerResetFn with the same ({g,yr) arguments for
the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

Added a variety of embedded DIRK methods from [58] and [59].

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.1.10 Changes in v5.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated ARKStepSetDiagnostics(), MRIStepSetDiagnostics(), ERKStepSetDiagnostics(), SUN-
NonlinSolSetPrintLevel_Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNonlinSolSetPrint-
Level_FixedPoint (), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSetInfoFile_PCG(), SUN-
LinSolSetPrintLevel _PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSetPrintLevel_SPGMR(),

1.1. Changes from previous versions 7

https://ginkgo-project.github.io/
https://kokkos.org/
https://kokkos.org/

User Documentation for ARKODE, v5.7.0

SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLinSolSetInfoFile_SPT-
FQM(), SUNLinSolSetPrintLevel_SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(), SUNLinSolSetPrint-
Level_SPBCGS() it is recommended to use the SUNLogger API instead. The SUNLinSolSetInfoFile_** and
SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option SUNDIALS_LOG-
GING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

Added the functions ARKStepPrintAllStats(), ERKStepPrintAllStats(), and MRIStepPrintAll() to output
all of the integrator, nonlinear solver, linear solver, and other statistics in one call. The file scripts/sundials_csv.
py contains functions for parsing the comma-separated value output files.

Added the functions ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs () to optionally re-
move an evaluation of the implicit right-hand side function after nonlinear solves. See §2.11.1, for considerations on
using this optimization.

Added the function MRIStepSetOrder () to select the default MRI method of a given order.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

A bug was fixed in the functions ARKStepGetNumNonlinSolvConvFails (), ARKStepGetNonlinSolvStats(),
MRIStepGetNumNonlinSolvConvFails(), and MRIStepGetNonlinSolvStats() where the number of nonlinear
solver failures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed
with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure
was not included in the nonlinear solver failure count. These functions have been updated to return the total number of
nonlinear solver failures. As such users may see an increase in the number of failures reported.

The functions ARKStepGetNumStepSolveFails() and MRIStepGetNumStepSolveFails() have been added to
retrieve the number of failed steps due to a nonlinear solver failure. The counts returned from these functions will
match those previously returned by ARKStepGetNumNonlinSolvConvFails(), ARKStepGetNonlinSolvStats(),
MRIStepGetNumNonlinSolvConvFails(), and MRIStepGetNonlinSolvStats().

1.1.11 Changes in v5.1.1

Fixed exported SUNDIALSConfig.cmake.
Fixed Fortran interface to MRIStepInnerStepper and MRIStepCoupling structures and functions.

Added new Fortran example program, examples/arkode/F2003_serial/ark_kpr_mri_£2003.f90 demonstrat-
ing MRI capabilities.

8 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

1.1.12 Changes in v5.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.1.13 Changes in v5.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create () to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.

1.1. Changes from previous versions 9

https://github.com/LLNL/Caliper

User Documentation for ARKODE, v5.7.0

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials: :sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewlVithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

ARKODE

Removed

Replacement

SUNBandLinearSolver
SUNDenseLinearSolver
SUNKLU

SUNLinSol_Band()
SUNLinSol_Dense()
SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1l SUNLinSol_PCGSetMax1 ()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1l SUNLinSol_SPBCGSSetMaxl()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType ()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType ()

SUNSPFGMRSetMaxRestarts
SUNSPGMR

SUNLinSol_SPFGMRSetMaxRestarts()
SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1 ()
SUNSuperLUMT SUNLinSol_SuperLUMT ()

SUNSuperLUMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

The MRIStep module has been extended to support implicit-explicit (ImEx) multirate infinitesimal generalized ad-
ditive Runge—Kutta (MRI-GARK) methods. As such, MRIStepCreate() has been updated to include arguments
for the slow explicit and slow implicit ODE right-hand side functions. MRIStepCreate () has also been updated to

10 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

require attaching an MRIStepInnerStepper for evolving the fast time scale. MRIStepReInit () has been similarly up-
dated to take explicit and implicit right-hand side functions as input. Codes using explicit or implicit MRI methods
will need to update MRIStepCreate() and MRIStepReInit () calls to pass NULL for either the explicit or implicit
right-hand side function as appropriate. If ARKStep is used as the fast time scale integrator, codes will need to call
ARKStepCreateMRIStepInnerStepper () to wrap the ARKStep memory as an MRIStepInnerStepper object. Ad-
ditionally, MRIStepGetNumRhsEvals () has been updated to return the number of slow implicit and explicit function
evaluations. The coupling table structure MRIStepCouplingMem and the functions MRIStepCoupling_Alloc() and
MRIStepCoupling_Create() have also been updated to support IMEX-MRI-GARK methods.

The deprecated functions MRIStepGetCurrentButcherTables and MRIStepWriteButcher and the utility func-
tions MRIStepSetTable and MRIStepSetTableNum have been removed. Users wishing to create an MRI-GARK
method from a Butcher table should use MRIStepCoupling_MIStoMRI() to create the corresponding MRI coupling
table and attach it with MRIStepSetCoupling().

The implementation of solve-decoupled implicit MRI-GARK methods has been updated to remove extraneous slow
implicit function calls and reduce the memory requirements.

The previously deprecated functions ARKStepSetMaxStepsBetweenLSet and ARKStepSetMaxStepsBetweenJac
have been removed and replaced with ARKStepSetLSetupFrequency () and ARKStepSetMaxStepsBetweenJac()
respectively.

The ARKODE Fortran 77 interface has been removed. See §4.5 and the F2003 example programs for more details
using the SUNDIALS Fortran 2003 module interfaces.

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name

realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST

BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH
MODIFIED_GS SUN_MODIFIED_GS
CLASSICAL_GS SUN_CLASSICAL_GS
ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn

DlsMat SUND1lsMat

DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM
SDIRK_2_1_2 ARKODE_SDIRK_2_1_2
BILLINGTON_3_3_2 ARKODE_BILLINGTON_3_3_2
TRBDF2_3_3_2 ARKODE_TRBDF2_3_3_2

continues on next page

1.1. Changes from previous versions 11

User Documentation for ARKODE, v5.7.0

Table 1.1 — continued from previous page

Deprecated Name New Name

KVAERNO_4_2_3 ARKODE_KVAERNO_4_2_3
ARK324L2SA_DIRK_4_2_3 ARKODE_ARK3241.2SA_DIRK_4_2_3
CASH_5_2_4 ARKODE_CASH_5_2_4

CASH_5_3_4 ARKODE_CASH_5_3_4
SDIRK_5_3_4 ARKODE_SDIRK_5_3_4

KVAERNO_5_3_4
ARK436L2SA_DIRK_6_3_4

ARKODE_KVAERNO_5_3_4
ARKODE_ARK436L2SA_DIRK_6_3_4

KVAERNO_7_4_5 ARKODE_KVAERNO_7_4_5
ARK548L2SA_DIRK_8_4_5 ARKODE_ARK548L2SA_DIRK_8_4_5
ARK437L2SA_DIRK_7_3_4 ARKODE_ARK437L2SA_DIRK_7_3_4

ARK548L2SAb_DIRK_8_4_5 ARKODE_ARK548L2SAb_DIRK_8_4_5
MIN_DIRK_NUM ARKODE_MIN_DIRK_NUM
MAX_DIRK_NUM ARKODE_MAX_DIRK_NUM

MIS_KW3 ARKODE_MIS_KW3

MRI_GARK_ERK33a ARKODE_MRI_GARK_ERK33a
MRI_GARK_ERK45a ARKODE_MRI_GARK_ERK45a
MRI_GARK_IRK21la ARKODE_MRI_GARK_IRK21la
MRI_GARK_ESDIRK34a ARKODE_MRI_GARK_ESDIRK34a
MRI_GARK_ESDIRK46a ARKODE_MRI_GARK_ESDIRK46a
IMEX_MRI_GARK3a ARKODE_IMEX_ MRI_GARK3a
IMEX_MRI_GARK3b ARKODE_IMEX_MRI_GARK3b
IMEX_MRI_GARK4 ARKODE_IMEX_MRI_GARK4
MIN_MRI_NUM ARKODE_MIN_MRI_NUM

MAX_MRI_NUM ARKODE_MAX_MRI_NUM
DEFAULT_MRI_TABLE_3 MRISTEP_DEFAULT_TABLE_3
DEFAULT_EXPL_MRI_TABLE_3 MRISTEP_DEFAULT_EXPL_TABLE_3
DEFAULT_EXPL_MRI_TABLE_4 MRISTEP_DEFAULT_EXPL_TABLE_4
DEFAULT_IMPL_SD_TABLE_2 MRISTEP_DEFAULT_IMPL_SD_TABLE_2
DEFAULT_IMPL_SD_TABLE_3 MRISTEP_DEFAULT_IMPL_SD_TABLE_3
DEFAULT_IMPL_SD_TABLE_4 MRISTEP_DEFAULT_IMPL_SD_TABLE_4
DEFAULT_IMEX_SD_TABLE_3 MRISTEP_DEFAULT_IMEX_SD_TABLE_3
DEFAULT_IMEX_SD_TABLE_4 MRISTEP_DEFAULT_IMEX_SD_TABLE_4
HEUN_EULER_2_1_2 ARKODE_HEUN_EULER_2_1_2
BOGACKI_SHAMPINE_4_2_3 ARKODE_BOGACKI_SHAMPINE_4_

2_3
ARK324L2SA_ERK_4_2_3 ARKODE_ARK324L2SA_ERK_4_2_3

ZONNEVELD_5_3_4 ARKODE_ZONNEVELD_5_3_4
ARK436L2SA_ERK_6_3_4 ARKODE_ARK436L2SA_ERK_6_3_4
SAYFY_ABURUB_6_3_4 ARKODE_SAYFY_ABURUB_6_3_4

CASH_KARP_6_4_5
FEHLBERG_6_4_5
DORMAND_PRINCE_7_4_5
ARK548L2SA_ERK_8_4_5
VERNER_8_5_6
FEHLBERG_13_7_8

ARKODE_CASH_KARP_6_4_5
ARKODE_FEHLBERG_6_4_5
ARKODE_DORMAND_PRINCE_7_4_5
ARKODE_ARK548L2SA_ERK_8_4_5
ARKODE_VERNER_8_5_6
ARKODE_FEHLBERG_13_7_8

KNOTH_WOLKE_3_3
ARK437L2SA_ERK_7_3_4
ARK548L2SAb_ERK_8_4_5
MIN_ERK_NUM
MAX_ERK_NUM
DEFAULT_ERK_2

ARKODE_KNOTH_WOLKE_3_3
ARKODE_ARK437L2SA_ERK_7_3_4
ARKODE_ARK548L2SAb_ERK_8_4_5
ARKODE_MIN_ERK_NUM
ARKODE_MAX_ERK_NUM
ARKSTEP_DEFAULT_ERK_2

continues on next page

12

Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

Table 1.1 — continued from previous page

Deprecated Name

New Name

DEFAULT_ERK_3
DEFAULT_ERK_4
DEFAULT_ERK_5
DEFAULT_ERK_6
DEFAULT_ERK_8
DEFAULT_DIRK_2
DEFAULT_DIRK_3
DEFAULT_DIRK_4
DEFAULT_DIRK_5
DEFAULT_ARK_ETABLE_3
DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ETABLE_5
DEFAULT_ARK_ITABLE_3
DEFAULT_ARK_ITABLE_4
DEFAULT_ARK_ITABLE_5
DEFAULT_ERK_2
DEFAULT_ERK_3
DEFAULT_ERK_4
DEFAULT_ERK_5
DEFAULT_ERK_6
DEFAULT_ERK_8

ARKSTEP_DEFAULT_ERK_3
ARKSTEP_DEFAULT_ERK_4
ARKSTEP_DEFAULT_ERK_5
ARKSTEP_DEFAULT_ERK_6
ARKSTEP_DEFAULT_ERK_8
ARKSTEP_DEFAULT_DIRK_2
ARKSTEP_DEFAULT_DIRK_3
ARKSTEP_DEFAULT_DIRK_4
ARKSTEP_DEFAULT_DIRK_5
ARKSTEP_DEFAULT_ARK_ETABLE_3
ARKSTEP_DEFAULT_ARK_ETABLE_4
ARKSTEP_DEFAULT_ARK_ETABLE_4
ARKSTEP_DEFAULT_ARK_ITABLE_3
ARKSTEP_DEFAULT_ARK_ITABLE_4
ARKSTEP_DEFAULT_ARK_ITABLE_5
ERKSTEP_DEFAULT_2
ERKSTEP_DEFAULT_3
ERKSTEP_DEFAULT_4
ERKSTEP_DEFAULT_5
ERKSTEP_DEFAULT_6
ERKSTEP_DEFAULT_8

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):

Deprecated Name

New Name

DenseGETRF
DenseGETRS
denseGETRF
denseGETRS
DensePOTRF
DensePOTRS
densePOTRF
densePOTRS
DenseGEQRF
DenseORMQR
denseGEQRF
denseORMQR
DenseCopy

denseCopy

DenseScale
denseScale

denseAddIdentity

DenseMatvec
denseMatvec
BandGBTRF
bandGBTRF
BandGBTRS
bandGBTRS

SUND1sMat_DenseGETRF
SUND1sMat_DenseGETRS
SUND1sMat_denseGETRF
SUND1sMat_denseGETRS
SUND1sMat_DensePOTRF
SUND1sMat_DensePQOTRS
SUND1sMat_densePOTRF
SUND1sMat_densePOTRS
SUND1sMat_DenseGEQRF
SUND1sMat_DenseORMQR
SUND1sMat_denseGEQRF
SUND1sMat_denseORMQR
SUND1sMat_DenseCopy
SUND1sMat_denseCopy
SUND1sMat_DenseScale
SUND1sMat_denseScale
SUND1sMat_denseAddIdentity
SUND1sMat_DenseMatvec
SUND1sMat_denseMatvec
SUND1sMat_BandGBTRF
SUND1sMat_bandGBTRF
SUND1sMat_BandGBTRS
SUND1sMat_bandGBTRS

continues on next page

1.1. Changes from previous versions

13

User Documentation for ARKODE, v5.7.0

Table 1.2 — continued from previous page

Deprecated Name

New Name

BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1lsMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS
QRfact SUNQRFact

QRsol SUNQRsol

DlsMat_NewDenseMat
DlsMat_NewBandMat

SUND1sMat_NewDenseMat
SUND1sMat_NewBandMat

DestroyMat SUND1sMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1lsMat_NewIndexArray
NewRealArray SUNDlsMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1lsMat_PrintMat
newDenseMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUND1sMat_newIndexArray
newRealArray SUND1lsMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.1.14 Changes in v4.8.0

The RAJA NVECTOR implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §10.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess(), to indicate that the next
call to SUNLinSolSolve () will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty () constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

ARKODE now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUNLin-
earSolver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

14 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

Support for user-defined inner (fast) integrators has been to the MRIStep module. See §5.5.4 for more information on
providing a user-defined integration method.

Added the functions ARKStepSetN1sRhsFn() and MRIStepSetNIsRhsFn() to supply an alternative implicit right-
hand side function for use within nonlinear system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps () where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the ARKODE stepper modules where the stop time may be passed after resetting the integrator.

1.1.15 Changes in v4.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At
present the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §8.12 for more details. This
module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §10.8 for more details.

1.1.16 Changes in v4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.17 Changes in v4.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §8.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer (), was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer () operation, and that the pointer returned by N_VGetDeviceArrayPointer () is a valid CUDA device
pointer.

1.1. Changes from previous versions 15

User Documentation for ARKODE, v5.7.0

1.1.18 Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.1.19 Changes in v4.4.0

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver. Fixed bug for ERK method integration with static mass
matrices.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [1] has been added to
enable parallel-in-time integration. See the §5.2.5 section for more information and the example codes in examples/
arkode/CXX_xbraid. This interface required the addition of three new N_Vector operations to exchange vector data
between computational nodes, see N_VBufSize (), N_VBufPack(), and N_VBufUnpack (). These N_Vector opera-
tions are only used within the XBraid interface and need not be implemented for any other context.

Updated the MRIStep time-stepping module in ARKODE to support higher-order MRI-GARK methods [75], including
methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

Added the functions ARKStepSetLSNormFactor (), ARKStepSetMassLSNormFactor (), and MRIStepSetLSNorm-
Factor () to specify the factor for converting between integrator tolerances (WRMS norm) and linear solver tolerances
(L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new reset functions ARKStepReset (), ERKStepReset (), and MRIStepReset () to reset the stepper time
and state vector to user-provided values for continuing the integration from that point while retaining the integration
history. These function complement the reinitialization functions ARKStepReInit (), ERKStepReInit (), and MRIS-
tepReInit () which reinitialize the stepper so that the problem integration should resume as if started from scratch.

Added new functions ARKStepComputeState(), ARKStepGetNonlinearSystemData(), MRIStepComputeS-
tate(), and MRIStepGetNonlinearSystemData () which advanced users might find useful if providing a custom
SUNNonlinSolSysFn().

The expected behavior of SUNNonlinSolGetNumIters () and SUNNonlinSolGetNumConvFails () inthe SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retrieved
by calling ARKStepGetNumNonlinSolvIters (), the cumulative number of failures with ARKStepGetNumNonlin-
SolvConvFails(), or both with ARKStepGetNonlinSolvStats().

A minor bug in checking the Jacobian evaluation frequency has been fixed. As a result codes using using a non-
default Jacobian update frequency through a call to ARKStepSetMaxStepsBetweenJac() will need to increase the
provided value by 1 to achieve the same behavior as before. Additionally, for greater clarity the functions ARKStepSet-
MaxStepsBetweenLSet () and ARKStepSetMaxStepsBetweenJac() have been deprecated and replaced with ARK-
StepSetLSetupFrequency () and ARKStepSetJacEvalFrequency () respectively.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

16 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

1.1.20 Changes in v4.3.0

Fixed a bug in ARKODE where the prototypes for ERKStepSetMinReduction() and ARKStepSetMinReduction()
were not included in arkode_erkstep.h and arkode_arkstep.h respectively.

Fixed a bug where inequality constraint checking would need to be disabled and then re-enabled to update the inequality
constraint values after resizing a problem. Resizing a problem will now disable constraints and a call to ARKStepSet-
Constraints() or ERKStepSetConstraints() is required to re-enable constraint checking for the new problem
size.

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added the optional function ARKStepSetJacTimesRhsFn () to specify an alternative implicit right-hand side function
for computing Jacobian-vector products with the internal difference quotient approximation.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

1.1.21 Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a bug in how ARKODE interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKODE
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Previ-
ously, ARKODE computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a similar bug in how ARKODE interfaces with scaled linear solvers when solving problems with non-identity
mass matrices. Here, the left scaling matrix should correspond with rwt and the right scaling matrix with ewt; these
were reversed but are now correct.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

The function ARKStepSetLinearSolutionScaling() was added to enable or disable the scaling applied to linear
system solutions with matrix-based linear solvers to account for a lagged value of in the linear system matrix e.g.,
M —~J or I — ~J. Scaling is enabled by default when using a matrix-based linear solver.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change the mini-
mum allowed step size reduction factor after an error test failure.

Added a new SUNMatrix implementation, §9.7, that interfaces to the sparse matrix implementation from the NVIDIA
cuSPARSE library. In addition, the §10.17 SUNLinearSolver has been updated to use this matrix, as such, users of
this module will need to update their code. These modules are still considered to be experimental, thus they are subject
to breaking changes even in minor releases.

Added a new “stiff” interpolation module, based on Lagrange polynomial interpolation, that is accessible to each of the
ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide increased interpolation
accuracy when integrating stiff problems, as opposed to the ARKODE-standard Hermite interpolation module that can
suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite module remains the default, the

1.1. Changes from previous versions 17

User Documentation for ARKODE, v5.7.0

new Lagrange module may be enabled using one of the routines ARKStepSetInterpolantType (), ERKStepSet-
InterpolantType(), or MRIStepSetInterpolantType(). The serial example problem ark_brusselator.c
has been converted to use this Lagrange interpolation module. Created accompanying routines ARKStepSetInter-
polantDegree(), ARKStepSetInterpolantDegree() and ARKStepSetInterpolantDegree() to provide user
control over these interpolating polynomials. While the routines ARKStepSetDenseOrder (), ARKStepSetDense-
Order () and ARKStepSetDenseOrder() still exist, these have been deprecated and will be removed in a future
release.

1.1.22 Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Fixed a bug in the Fortran 2003 interfaces to the ARKODE Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type(c_ptr) in Fortran.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file pointers that
are useful when using the Fortran 2003 interfaces.

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called affer any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStepStagePredictFn, and may
be set by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData () to attach their user data pointer to the
inner integrator memory as MRIStepSetUserData () will not set the pointer for both the inner and outer integrators.
The MRIStep examples have been updated to reflect this change.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module when using Anderson accel-
eration. See §11.4.1 and the SUNNonlinSolSetDamping_FixedPoint () for more details.

1.1.23 Changes in v4.0.0

Build system changes

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as SUN-
DIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to the BLAS
library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_LIBRARIES when
enabling SuperLU_DIST.

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.
NVECTOR module changes

Two new functions were added to aid in creating custom NVECTOR objects. The constructor N_VNewEmpty () al-
locates an “empty” generic NVECTOR with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the NVECTOR API by ensuring only required operations need to be set. Additionally,
the function N_VCopyOps () has been added to copy the operation function pointers between vector objects. When

18 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

used in clone routines for custom vector objects these functions also will ease the introduction of any new optional
operations to the NVECTOR API by ensuring all operations are copied when cloning objects.

Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANY VECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accompanied
by additions to user documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the NVECTOR API.
The new required operation, N_VGetLength(), returns the global length of an N_Vector. The optional operations
have been added to support the new NVECTOR_MPIMANY VECTOR implementation. The operation N_VGetCom-
municator () must be implemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR,
but is not used outside of this context. The remaining nine operations are optional local reduction operations intended
to eliminate unnecessary latency when performing vector reduction operations (norms, etc.) on distributed memory
systems. The optional local reduction vector operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VMin-
Local (), N_VLINormLocal (), N_VWSqrSumLocal (), N_VWSqrSumMaskLocal (), N_VInvTestLocal(), N_VCon-
strMaskLocal (), and N_VMinQuotientLocal (). If an NVECTOR implementation defines any of the local oper-
ations as NULL, then the NVECTOR_MPIMANY VECTOR will call standard NVECTOR operations to complete the
computation.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X paradigm
where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied by additions to
user documentation and SUNDIALS examples.

The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_-
RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundi-
als_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users should use the
NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules
to replace the functionality. The necessary changes are minimal and should require few code modifications. See the
programs in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVECTOR_-
MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer.

Added new Fortran 2003 interfaces for most NVECTOR modules. See the §4.5 section for more details.

Added three new NVECTOR utility functions, N_VGetVecAtIndexVectorArray () N_VSetVecAtIndexVectorAr-
ray(), and N_VNewVectorArray (), for working with N_Vector arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor SUNMatNewEmpty ()
allocates an “empty” generic SUNMATRIX with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the SUNMATRIX API by ensuring only required operations need to be set. Additionally,
the function SUNMatCopyOps () has been added to copy the operation function pointers between matrix objects. When
used in clone routines for custom matrix objects these functions also will ease the introduction of any new optional
operations to the SUNMATRIX API by ensuring all operations are copied when cloning objects.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API. Users who have implemented cus-
tom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API to perform any setup necessary for

1.1. Changes from previous versions 19

User Documentation for ARKODE, v5.7.0

computing a matrix-vector product. This operation is useful for SUNMATRIX implementations which need to prepare
the matrix itself, or communication structures before performing the matrix-vector product. Users who have imple-
mented custom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure
member, matvecsetup, to NULL.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations. Operations which
return an integer flag indiciating success/failure may return different values than previously.

A new SUNMATRIX (and SUNLINEARSOLVER) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See the §4.5 section for more details.
SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINEARSOLVER objects. The constructor SUNLinSol-
NewEmpty () allocates an “empty” generic SUNLINEARSOLVER with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNLINEARSOLVER API by ensuring only required
operations need to be set.

The return type of the SUNLINEARSOLVER API function SUNLinSolLastFlag() has changed from long int to
sunindextype to be consistent with the type used to store row indices in dense and banded linear solver modules.

Added a new optional operation to the SUNLINEARSOLVER API, SUNLinSolGetID(), that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

The SUNLINEARSOLVER API has been updated to make the initialize and setup functions optional.

A new SUNLINEARSOLVER (and SUNMATRIX) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

Added three new accessor functions to the SUNLinSol_KLU module, SUNLinSol_KLUGetSymbolic(), SUNLin-
Sol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon(), to provide user access to the underlying KLU solver
structures.

Added new Fortran 2003 interfaces for most SUNLINEARSOLVER modules. See the §4.5 section for more details.
SUNNonlinearSolver module changes

A new function was added to aid in creating custom SUNNONLINEARSOLVER objects. The constructor SUNNon-
linSolNewEmpty () allocates an “empty” generic SUNNONLINEARSOLVER with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNNONLINEARSOLVER API by ensuring
only required operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetConvTestFn()
function in the SUNNONLINEARSOLVER API has been updated to take a void* data pointer as input. The supplied
data pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () function in the SUNNONLINEAR-
SOLVER have been changed to be the predicted state and the initial guess for the correction to that state. Additionally,
the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn in the SUNNONLINEARSOLVER API
have been updated to remove unused input parameters.

Added a new SUNNonlinearSolver implementation, SUNNonlinsol_PetscSNES, which interfaces to the PETSc
SNES nonlinear solver API.

20 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

Added new Fortran 2003 interfaces for most SUNNONLINEARSOLVER modules. See the §4.5 section for more
details.

ARKODE changes

The MRIStep module has been updated to support explicit, implicit, or InEx methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRIStepCreate () which now
takes an ARKStep memory structure for the fast integration as an input.

Fixed a bug in the ARKStep time-stepping module that would result in an infinite loop if the nonlinear solver failed to
converge more than the maximum allowed times during a single step.

Fixed a bug that would result in a “too much accuracy requested” error when using fixed time step sizes with explicit
methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a memeory leak in FARKODE when not using the default nonlinear solver.

The reinitialization functions ERKStepReInit (), ARKStepReInit (), and MRIStepReInit () have been updated to
retain the minimum and maxiumum step size values from before reinitialization rather than resetting them to the default
values.

Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries of the
vector-valued absolute tolerance array, are strictly positive. In this scenario, ARKODE will remove at least one global
reduction per time step.

The ARKLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian eval-
vation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function ARKLsLinSysFn () was added as an alternative method for evaluating the linear
system A = M — ~J.

Added two new embedded ARK methods of orders 4 and 5 to ARKODE (from [60]).

Support for optional inequality constraints on individual components of the solution vector has been added the
ARKODE ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints () and ARKStepSet-

Constraints() for more details. Note that enabling constraint handling requires the NVECTOR operations N_VMin-
Quotient (), N_VConstrMask(), and N_VCompare () that were not previously required by ARKODE.

Added two new ‘Get’ functions to ARKStep, ARKStepGetCurrentGamma (), and ARKStepGetCurrentState (), that
may be useful to users who choose to provide their own nonlinear solver implementation.

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn() for perform-
ing communication or memory transfers needed before or after the inner integration.

A new Fortran 2003 interface to ARKODE was added. This includes Fortran 2003 interfaces to the ARKStep, ERKStep,
and MRIStep time-stepping modules. See the §4.5 section for more details.

1.1. Changes from previous versions 21

User Documentation for ARKODE, v5.7.0

1.1.24 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate interop-
erability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMem structure will need to update their code to use ARKODE’s public APL

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_Write when printing a Butcher table without an embedding.

1.1.25 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.26 Changes in v3.0.1

A bug in ARKODE where single precision builds would fail to compile has been fixed.

1.1.27 Changes in v3.0.0

The ARKODE library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality. To
support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping module.
Two new time-stepping modules have been added:

* The ERKStep module provides an optimized implementation for explicit Runge—Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

* The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing differ-
ent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines for
user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name of
time-stepping module (e.g., ARKStep or ERKStep) instead of ARKODE. Aside from affecting the names of these routines,
user-level changes have been kept to a minimum. However, we recommend that users consult both this documentation
and the ARKODE example programs for further details on the updated infrastructure.

As part of the ARKODE restructuring an ARKodeButcherTable structure has been added for storing Butcher ta-
bles. Functions for creating new Butcher tables and checking their analytic order are provided along with other utility
routines. For more details see $6.

Two changes were made in the initial step size algorithm:
* Fixed an efficiency bug where an extra call to the right hand side function was made.

¢ Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

22 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

ARKODE’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKODE’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into
a single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT
and ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes linear
solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implementations
are included in the chapter §10. All ARKODE examples programs and the standalone linear solver examples have been
updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their iout array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been updated to
follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names are SUN-
LinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense, SUN-
LinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUNLin-
Sol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges in user
migration to the new names, the previous routine names may still be used; these will be deprecated in future releases, so
we recommend that users migrate to the new names soon. All ARKODE example programs and the standalone linear
solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNON-
LINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in §11 and follow
the same object oriented design and implementation used by the N'Vector, SUNMatrix, and SUNLinSol modules. Cur-
rently two SUNNONLINSOL implementations are provided, SUNNonlinSol_Newton and SUNNonlinSol_FixedPoint.
These replicate the previous integrator specific implementations of a Newton iteration and an accelerated fixed-point
iteration, respectively. Example programs using each of these nonlinear solver modules in a standalone manner have
been added and all ARKODE example programs have been updated to use generic SUNNonlinSol modules.

As with previous versions, ARKODE will use the Newton solver (now provided by SUNNonlinSol_Newton) by default.
Use of the ARKStepSetLinear () routine (previously named ARKodeSetLinear) will indicate that the problem is
linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch to the accelerated
fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that to ARKODE, instead
of calling the previous ARKodeSetFixedPoint routine. See the documentation sections §5.2.1, §5.2.2.5, and §11.4
for further details, or the serial C example program ark_brusselator_£fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an NVector
(see §8.1 for more details). The new operations are intended to increase data reuse in vector operations, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with acceler-
ators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an NVector implementation defines any of these operations as NULL, then
standard NVector operations will automatically be called as necessary to complete the computation.

Multiple changes to the CUDA NVECTOR were made:

* Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

e Added N_VGetLocalLength_Cuda to return the local vector length.

1.1. Changes from previous versions 23

User Documentation for ARKODE, v5.7.0

Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
e Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_-
OpenMPDEV. See §8.15 for more details.

1.1.28 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector data.

Fixed library installation path for multiarch systems. This fix changes the default library installation path to CMAKE_-
INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib. CMAKE_INSTALL_LIBDIR is au-
tomatically set, but is available as a CMAKE option that can modified.

1.1.29 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

24 Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.30 Changes in v2.1.2
Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally handle
the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The sum
now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient if the
user-supplied Jacobian routine allocates storage for the sum I + .J or M + ~J manually (with zero entries if needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.31 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKRelnit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used (to avoid
compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWirmsNormMask and revised the RAJA NVEC-
TOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one. Replaced
double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

1.1. Changes from previous versions 25

User Documentation for ARKODE, v5.7.0

1.1.32 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.1.33 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries.

Specific changes include:

* Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented APIL.

¢ Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK
dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented APIL

¢ Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

¢ Added Spils interface routines to ARKODE, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

26 Chapter 1. Introduction

https://software.llnl.gov/RAJA/

User Documentation for ARKODE, v5.7.0

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing ENABLE_EXAMPLES to ENABLE_EXAMPLES_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing FOO_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.34 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.
The bugfixes include:

* For each linear solver, the various solver performance counters are now initialized to 0 in both the solver speci-
fication function and in the solver’s 1init function. This ensures that these solver counters are initialized upon
linear solver instantiation as well as at the beginning of the problem solution.

* The choice of the method vs embedding the Billington and TRBDF2 explicit Runge—Kutta methods were
swapped, since in those the lower-order coeflicients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

* A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

* A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running
with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the
embedding order was below 1.

* Numerous aspects of the documentation were fixed and/or clarified.
The feature changes/enhancements include:

» Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

¢ Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module name.

* A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces. In
addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

* The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and
corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR
format when using KLU.

e The ARKODE implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new
predictor approach was added, and the default choice was modified.

1.1. Changes from previous versions 27

https://xsdk.info

User Documentation for ARKODE, v5.7.0

1.2

The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR supported
by the KLU linear solver interface. ARKODE interfaces to the KLU solver from both C and Fortran were updated
to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

The missing ARKSpilsGetNumMtimesEvals() function was added — this had been included in the previous
documentation but had not been implemented.

The handling of integer codes for specifying built-in ARKODE Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to streamline
incorporation of new Butcher tables into ARKODE.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge—Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

In the next section we provide a thorough presentation of the underlying mathematical algorithms used within
the ARKODE family of solvers.

We follow this with an overview of how the source code for both SUNDIALS and ARKODE are organized.

The largest section follows, providing a full account of how to use ARKODE’s time-stepping modules, ARKStep,
ERKStep, and MRIStep, within C and C++ applications. This section then includes additional information on
how to use ARKODE from applications written in Fortran, as well as information on how to leverage GPU
accelerators within ARKODE.

A much smaller section follows, describing ARKODE’s Butcher table structure, that is used by both ARKStep
and ERKStep.

Subsequent sections discuss shared SUNDIALS features that are used by ARKODE: vector data structures,
matrix data Structures, linear S()IVL)I' dam Structures, nonlinear S()ZVL)I' dCl[[l Structures, memory managemem
utilities, and the installation procedure.

The final sections catalog the full set of ARKODE constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKODE.

28

Chapter 1. Introduction

User Documentation for ARKODE, v5.7.0

1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2023, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

1.3. SUNDIALS License and Notices 29

User Documentation for ARKODE, v5.7.0

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

30 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

ARKODE solves ODE initial value problems (IVP) in RY posed in the form

Here, ¢ is the independent variable (e.g. time), and the dependent variables are given by y € RV, where we use the
notation ¢ to denote dy/dt.

For each value of ¢, M (t) is a user-specified linear operator from R” — R This operator is assumed to be nonsingular
and independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, M is typically the identity matrix, I. For PDEs using standard finite-element spatial semi-discretizations,
M is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed between spatial
rediscretization events).

The ODE right-hand side is given by the function f(¢,y) — in general we make no assumption that the problem (2.1)
is autonomous (i.e., f = f(y)) or linear (f = Ay). In general, the time integration methods within ARKODE support
additive splittings of this right-hand side function, as described in the subsections that follow. Through these splittings,
the time-stepping methods currently supplied with ARKODE are designed to solve stiff, nonstiff, mixed stiff/nonstiff,
and multirate problems. As per Ascher and Petzold [12], a problem is “stiff”’ if the stepsize needed to maintain stability
of the forward Euler method is much smaller than that required to represent the solution accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKODE. We first discuss the
“single-step” nature of the ARKODE infrastructure, including its usage modes and approaches for interpolated so-
lution output. We then discuss the current suite of time-stepping modules supplied with ARKODE, including the
ARKStep module for additive Runge—Kutta methods, the ERKStep module that is optimized for explicit Runge—Kutta
methods, and the MRIStep module for multirate infinitesimal step (MIS), multirate infinitesimal GARK (MRI-GARK),
and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods. We then discuss the adaptive temporal error controllers
shared by the time-stepping modules, including discussion of our choice of norms for measuring errors within various
components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKODE’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKODE'’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.

31

User Documentation for ARKODE, v5.7.0

2.1 Adaptive single-step methods

The ARKODE infrastructure is designed to support single-step, IVP integration methods, i.e.

Yn = P(Yn—1,hn)

where y,,_1 is an approximation to the solution y(¢,,_1), y,, is an approximation to the solution y(¢,,), t,, = tp—1+ hny,
and the approximation method is represented by the function ¢.

The choice of step size h,, is determined by the time-stepping method (based on user-provided inputs, typically accuracy
requirements). However, users may place minimum/maximum bounds on h,, if desired.

ARKODE’s time stepping modules may be run in a variety of “modes”:

* NORMAL - The solver will take internal steps until it has just overtaken a user-specified output time, toy, in
the direction of integration, i.e. t,_1 < tou < t, for forward integration, or t,, < ton < t,—1 for backward
integration. It will then compute an approximation to the solution (%o,) by interpolation (using one of the dense
output routines described in the section §2.2).

* ONE-STEP - The solver will only take a single internal step y,,—1 — ¥, and then return control back to the
calling program. If this step will overtake ¢, then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution y,,.

* NORMAL-TSTOP — The solver will take internal steps until the next step will overtake ¢,,. It will then limit
this next step so that ¢, = t,_1 + h,, = tou, and once the step completes it will return a copy of the internal
solution ¥,.

¢ ONE-STEP-TSTOP - The solver will check whether the next step will overtake ¢, — if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that ¢,, = ¢,,_1 + h,, = tou. In either case,
once the step completes it will return a copy of the internal solution y,,.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKODE support interpolation of solutions y () and derivatives
y(d) (tout), Where toy occurs within a completed time step from ¢,,_1 — t,,. Additionally, this module supports extrap-
olation of solutions and derivatives for ¢ outside this interval (e.g. to construct predictors for iterative nonlinear and
linear solvers). To this end, ARKODE currently supports construction of polynomial interpolants p,(t) of polynomial
degree up to ¢ = 5, although users may select interpolants of lower degree.

ARKODE provides two complementary interpolation approaches, both of which are accessible from any of the time-
stepping modules: “Hermite” and “Lagrange”. The former approach has been included with ARKODE since its in-
ception, and is more suitable for non-stiff problems; the latter is a new approach that is designed to provide increased
accuracy when integrating stiff problems. Both are described in detail below.

32 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

Y= f(t,y), y(tO) = Yo-

we typically construct temporal interpolants using the data {y,,,_l, fn_l, Yns fn}, where here we use the simplified

notation fk to denote f (tx, yr). Defining a normalized “time” variable, 7, for the most-recently-computed solution
interval t,,_1 — t,, as

we then construct the interpolants p,(t) as follows:
* ¢ = 0: constant interpolant

n—1 1 Yn
P (T) Yn—1 Y)
*q= 1: linear Lagrange interpolant

Pi(T) = —TYn1+ (1 +7T)Yn.
* ¢ = 2: quadratic Hermite interpolant
p2(7) = T2 Y1 + (L= 7))y + (7 +7%) i
* q = 3: cubic Hermite interpolant
ps(r) = (372 + 2% g1 + (1= 372 = 27%) g + b (72 + 72) o1 + hn(7 + 272+ 7°) fo.
* q = 4: quartic Hermite interpolant

h .
pa(T) = (=672 — 167 — 974 yp_1 + (1 + 672 + 167> + 97%) y,, + f(—57’2 — 1473 — 97'4) fn_1

27hy,
4

+hn(7-+27—2+7-3) fn"’ (_7-4 —27° _7—2) fm

. . B, 1
where f, = f <tn 3P (—3)) We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function f(¢,), thereby increasing its cost in comparison with ps (¢).
* g = 5: quintic Hermite interpolant

ps(7) = (547° +1357* + 1107° 4 307°) yp—1 + (1 — 547° — 1357* — 1107° — 307°) yn,

h

n 5 2 N hn 5 2 A
+ 2 (277° + 6371 + 4973 +137%) f,_1 + 1(2770 + 727 + 6773 + 2672 + 1) £,

4
B oo 5 A f R
+ Z(81T° + 18974 + 13573 + 2772) f, + Z(sw + 21671 4 18973 + 5472) £,

L hin 1 . 2h,, 2
where f, = f (tn — ?,p4 (—3)) and fp = f (tn — 7’])4 (—3)). We point out that interpolation at
this degree requires four additional evaluations of the full right-hand side function f (t,y), thereby significantly

increasing its cost over py(t).

We note that although interpolants of order ¢ > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.

2.2. Interpolation 33

User Documentation for ARKODE, v5.7.0

2.2.2 Lagrange interpolation module

For stiff problems where f may have large Lipschitz constant, polynomial interpolants of Lagrange form are provided.
These interpolants are constructed using the data {y,, Yn—1,-..,Yn—r} Where 0 < v < 5. These polynomials have
the form

= Z Yn—;pi(t), where

Since we assume that the solutions y,,_; have length much larger than v < 5 in ARKODE-based simulations, we
evaluate p at any desired ¢ € R by first evaluating the Lagrange polynomial basis functions at the input value for ¢, and
then performing a simple linear combination of the vectors {y }%_,. Derivatives p(@ (t) may be evaluated similarly as

d
Pt Zyn 00 (),

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions increases
dramatically as the derivative order grows, our Lagrange interpolation module currently only provides derivatives up
tod = 3.

We note that when using this interpolation module, during the first (v — 1) steps of integration we do not have sufficient
solution history to construct the full v-degree interpolant. Therefore during these initial steps, we construct the highest-
degree interpolants that are currently available at the moment, achieving the full v-degree interpolant once these initial
steps have completed.

2.3 ARKStep - Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKODE is designed for IVPs of the form

M(t)y = fE(ty) + f1(ty), ylto) = o, (2.2)
i.e. the right-hand side function is additively split into two components:
 fE(t,y) contains the “nonstiff” components of the system (this will be integrated using an explicit method);
* fI(t,y) contains the “stiff” components of the system (this will be integrated using an implicit method);
and the left-hand side may include a nonsingular, possibly time-dependent, matrix M (¢).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

g=fty) + f(ty), ylte) = o, 2.3)
where fZ(t,y) = M(t)~! fE(t,y)and f1(t,y) = M(t)~' fT(t,y). ARKStep then utilizes variable-step, embedded,
additive Runge—Kutta methods (ARK), corresponding to algorithms of the form

i1
Zizynq-ﬁ-hnzz‘lfﬂm g %) T+ hn ZA ft nj, zj), i=1,...,s,

Y = Y1 + B Z(bEfE Fiz) + 0 FI L 7)) 24)

i=1

G = Yn1 + hn Z(bEfE B o) + Bt 2

i=1

34 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

Here §,, are embedded solutions that approximate y(¢,,) and are used for error estimation; these typically have slightly
lower accuracy than the computed solutions ¥,,. The internal stage times are abbreviated using the notation tﬁ j =
th—1 + cf h,, and t{l’ j=tn-1+ ch. h,. The ARK method is primarily defined through the coefficients AE ¢ Rsxs,
Al e R*#, bF € R*, b € R*, ¢¥ € R® and ¢! € R, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b” € R® and b’ € R® are used to construct the embedding 7,,. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages,
s. We note that except when the problem has a time-independent mass matrix M, ARKStep allows the possibility for
different explicit and implicit abscissae, i.e. ¢ need not equal ¢’.

The user of ARKStep must choose appropriately between one of three classes of methods: ImEXx, explicit, and implicit.
All of the built-in Butcher tables encoding the coefficients cZ, ¢!, AF, AT bF, b’ bF and b’ are further described in
the section §16.

For mixed stiff/nonstiff problems, a user should provide both of the functions ¥ and f’ that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [41, 57, 60], allowing for methods
having order of accuracy ¢ = {2,3,4,5} and embeddings with orders p = {1, 2, 3,4}; the tables for these methods
are given in section §16.3. Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f/ = 0, i.e. the equation (2.2) reduces to the non-split IVP

M@t)yy=f2ty), y(to) = o 2.5)

In this scenario, the coefficients A7 = 0, ¢! = 0, b/ = 0 and b’ = 0 in (2.4), and the ARK methods reduce to
classical explicit Runge—Kutta methods (ERK). For these classes of methods, ARKODE provides coefficients with
orders of accuracy ¢ = {2, 3,4,5,6,7,8,9}, with embeddings of orders p = {1, 2,3,4,5,6,7,8}. These default to the
methods in sections §16.1.1, §16.1.3, §16.1.8, §16.1.12, §16.1.17, and §16.1.20, respectively. As with ARK methods,
user-defined ERK tables are supported.

Alternately, for stiff problems the user may specify that f¥ = 0, so the equation (2.2) reduces to the non-split IVP

M@t)g=f'(ty), ylto) =yo. (2.6)

Similarly to ERK methods, in this scenario the coefficients AF =0,c¢F =0,bF = 0and bE = 0in (2.4), and the
ARK methods reduce to classical diagonally-implicit Runge—Kutta methods (DIRK). For these classes of methods,
ARKODE provides tables with orders of accuracy g = {2, 3,4, 5}, with embeddings of orders p = {1,2,3,4}. These
default to the methods §16.2.1, §16.2.9, §16.2.12, and §16.2.21, respectively. Again, user-defined DIRK tables are
supported.

2.4 ERKStep — Explicit Runge-Kutta methods

The ERKStep time-stepping module in ARKODE is designed for IVP of the form

y = f(tay)v y(tO) = Yo, (27)

i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,
M (t) = I) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge—Kutta methods (ERK), corresponding
to algorithms of the form
i—1
Zi:ynfl'i‘hnZAi,jf(tn}j;Zj» 1=1,...,s,

Jj=1

Yn = Yn-1+hn D _bif(tni, 2), (2.8)

i=1

s
gn = Yn—-1 + hn Z bif(tn,i7 Zi)v
i=1

2.4. ERKStep — Explicit Runge-Kutta methods 35

User Documentation for ARKODE, v5.7.0

where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is similarly
encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve every
problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module
since this simplified form admits a more efficient and memory-friendly implementation than the more general form
2.7).

2.5 SPRKStep - Symplectic Partitioned Runge—Kutta methods

The SPRKStep time-stepping module in ARKODE is designed for problems where the state vector is partitioned as

and the component partitioned IVP is given by

) = t’ 5 t =
p filt,q), p(to) = po 2.9)
i=f2(t.p), alto) = qo.
The right-hand side functions f1 (¢, p) and f5(¢, q) typically arise from the separable Hamiltonian system
H(t,p,q) =T(t,p) +V(tq)

where

fl(t,q)E%Zq)7 fZ(tap)E aT(;;’p)

When H is autonomous, then H is a conserved quantity. Often this corresponds to the conservation of energy (for exam-
ple, in n-body problems). For non-autonomous H, the invariants are no longer directly obtainable from the Hamiltonian
[88].

In practice, the ordering of the variables does not matter and is determined by the user. SPRKStep utilizes Symplectic
Partitioned Runge-Kutta (SPRK) methods represented by the pair of explicit and diagonally implicit Butcher tableaux,

C1 0 s 0 0 él &1 R 0 0

Co | a1 0 s : 62 dl dz

Cs | Q1 -+ Qgs—1 0 és dl dg cee ds
ar ccc Gs—1 Qs ar G as

These methods approximately conserve a nearby Hamiltonian for exponentially long times [47]. SPRKStep makes
the assumption that the Hamiltonian is separable, in which case the resulting method is explicit. SPRKStep provides
schemes with order of accuracy and conservation equal to ¢ = {1,2,3,4,5,6,8,10}. The references for these these
methods and the default methods used are given in the section §16.4.

In the default case, the algorithm for a single time-step is as follows (for autonomous Hamiltonian systems the times
provided to f1 and f5 can be ignored).

1. Set Py = pn—1,Q1 = qn-1

2. Fori=1,...,sdo:
1. P,=P_1 + hpa; f1(tn—1 + ¢ihn, Qi)
2. Qiy1 = Qi+ hpaifa(tn—1+ cihn, ;)

36 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

3. Setpn = Ps7Qn = Qs+1

Optionally, a different algorithm leveraging compensated summation can be used that is more robust to roundoff error
at the expense of 2 extra vector operations per stage and an additional 5 per time step. It also requires one extra vector to
be stored. However, it is signficantly more robust to roundoff error accumulation [86]. When compensated summation
is enabled, the following incremental form is used to compute a time step:

1. Set APy =0,AQ1 =0
2. Fori=1,...,sdo:
1. AP, = APy + hpai fi(tn—1 + éhn, gn1 + AQ;)
2. AQiv1 = AQi + hna; fa(tn—1 + cihn, pr—1 + AF;)
3. Set Ap, = AP, Ag, = AQs11
4. Using compensated summation, set p,, = pn—1 + APny @n = Gn-1 + Agn

Since temporal error based adaptive time-stepping is known to ruin the conservation property [47], SPRKStep employs
a fixed time-step size.

2.6 MRIStep — Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKODE is designed for IVPs of the form

y=rf"y) + 1ty + M (ty), ylte) =wo. (2.10)

i.e., the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff”” components of the system (this will be integrated using an explicit method
and a large time step h%),

* fI(t,y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step 2°), and

 fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step h!" < h%).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, M (t) = I. The
slow time scale may consist of only nonstiff terms (f! = 0), only stiff terms (f¥ = 0), or both nonstiff and stiff terms.

For cases with only a single slow right-hand side function (i.e., f¥ = 0 or f/ = 0), MRIStep provides fixed-slow-step
multirate infinitesimal step (MIS) [77, 78, 79] and multirate infinitesimal GARK (MRI-GARK) [75] methods. For
problems with an additively split slow right-hand side MRIStep provides fixed-slow-step implicit-explicit MRI-GARK
(IMEX-MRI-GARK) [27] methods. The slow (outer) method derives from an s stage Runge—Kutta method for MIS and
MRI-GARK methods or an additive Runge—Kutta method for IMEX-MRI-GARK methods. In either case, the stage
values and the new solution are computed by solving an auxiliary ODE with a fast (inner) time integration method.
This corresponds to the following algorithm for a single step:

1. SCtZl = Yn—1-
2. Fort=2,...,s+ 1do:

1. Let ti,i—l =tn_1+ C;S_lh's and U(tg,i—l) = Z;_1.

i—1 i
2. Letr;(t) = ﬁﬁ Zl wiyj(T)fE(tTIm, zj)+ Alcf Zl vi’j(T)fI(t,Iw, zj) where Ac? = (cf — cf_l) and the
j= L j=
normalized time is 7 = (t — ¢

n,ifl)/(hSAc;S)'
3. Fort € [t¥, |, t3]solve v(t) = fF(t,v) +ri(t).

n,i—17"n,i

2.6. MRIStep — Multirate infinitesimal step methods 37

User Documentation for ARKODE, v5.7.0

4. Set z; = v(t; ;).
3. Sety, = Zs41.
The fast (inner) IVP solve can be carried out using either the ARKStep module (allowing for explicit, implicit, or ImEx

treatments of the fast time scale with fixed or adaptive steps), or a user-defined integration method (see section §5.5.4).

The final abscissa is ¢ 1 = 1 and the coeflicients w; ; and ~y; ; are polynomials in time that dictate the couplings from

the slow to the fast time scale; these can be expressed as in [27] and [75] as

k k
wig(r) =Dl Tt and qi(r) =32l @.11)
k>0 k>0

and where the tables Q{F} € R(s+1)x(s+1) and [+ ¢ R(s+D*(s+1) define the slow-to-fast coupling for the explicit
and implicit components respectively.

For traditional MIS methods, the coupling coefficients are uniquely defined based on a slow Butcher table (A%, b, ¢%)
having an explicit first stage (i.e., ¢ = 0 and Af =0for1 < j < s), sorted abscissae (i.e., ¢ > ¢ | for2 <i < s),
and the final abscissa is ¢ < 1. With these properties met, the coupling coefficients for an explicit- slow method are
given as

0, ifi=1,
Wi = A8, —A8 L if2<i<s, 2.12)
by — A, ifi =s+1.

For general slow tables (A, b°, ¢%) with at least second-order accuracy, the corresponding MIS method will be second
order. However, if this slow table is at least third order and satisfies the additional condition

1 1
> (ef =) (e +ein) AT + (1-¢f) (2 + eZAScS> =3 (2.13)

=2

where e; corresponds to the j-th column from the s x s identity matrix, then the overall MIS method will be third
order.

In the above algorithm, when the slow (outer) method has repeated abscissa, i.e. Acg9 = 0 for stage ¢, the fast (inner)
IVP can be rescaled and integrated analytically. In this case the stage is computed as

Wik i {k}
77,’
%= 2 1+hSZ kf1 FE(5, 2) + 05 el B GRIENE (2.14)
j=1 \ k>0 j=1 \ k>0

which corresponds to a standard ARK, DIRK, or ERK stage computation depending on whether the summations over
k are zero or nonzero.

As with standard ARK and DIRK methods, implicitness at the slow time scale is characterized by nonzero values

on or above the diagonal of the matrices I't*}. Typically, MRI-GARK and IMEX-MRI-GARK methods are at most

diagonally-implicit (i.e., 'yl{]} = 0 for all j > 7). Furthermore, diagonally-implicit stages are characterized as being

“solve-decoupled” if Ac; = 0 when Vi, Z} = 0, in which case the stage is computed as standard ARK or DIRK update.

Alternately, a diagonally-implicit stage 7 is considered “solve-coupled” if Acf %{ j} # 0, in which case the stage solution
z; i both an input to 7(t) and the result of time-evolution of the fast IVP, necessitating an implicit solve that is coupled
to the fast (inner) solver. At present, only “solve-decoupled” diagonally-implicit MRI-GARK and IMEX-MRI-GARK
methods are supported.

For problems with only a slow-nonstiff term (f! = 0), MRIStep provides third and fourth order explicit MRI-GARK
methods. In cases with only a slow-stiff term (f¥ = 0), MRIStep supplies second, third, and fourth order implicit
solve-decoupled MRI-GARK methods. For applications with both stiff and nonstiff slow terms, MRIStep implements
third and fourth order IMEX-MRI-GARK methods. For a complete list of the methods available in MRIStep see
§5.5.3.2. Additionally, users may supply their own method by defining and attaching a coupling table, see §5.5.3 for
more information.

38 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

2.7 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKODE use a weighted root-mean-square norm, denoted || - ||wrwms, for all error-like quantities,

L 1/2
2
lv]|wrms = (N;(vi w;)) i (2.15)

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

w; = (RTOL~ [Yn—1,i| + ATOLi)_l. (2.16)

Since 1/w; represents a tolerance in the i-th component of the solution vector gy, a vector whose WRMS norm is
1 is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

w; = (RTOL~ |(M(tn-1)yn-1),| +ATOL;)_1, (2.17)

where the user may specify a separate absolute residual tolerance value or array, ATOL’. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.16),
whereas values having “equation” units use (2.17). Obviously, for problems with M = I, the solution and equation
units are identical, in which case the solvers in ARKODE will use (2.16) when computing all error norms.

2.8 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error test
fails, then the step is recomputed with a reduced step size. To this end, the Runge—Kutta methods packaged within both
the ARKStep and ERKStep modules admit an embedded solution ,,, as shown in equations (2.4) and (2.8). Generally,
these embedded solutions attain a slightly lower order of accuracy than the computed solution y,,. Denoting the order
of accuracy for y,, as ¢ and for ¢,, as p, most of these embedded methods satisfy p = ¢ — 1. These values of ¢ and p
correspond to the global orders of accuracy for the method and embedding, hence each admit local truncation errors
satisfying [45]

lyn = y(ta)ll = CET + O(RET),

7 (2.18)
1Gn — y(tn)|| = DRETT + O(REF?),

where C' and D are constants independent of h,,, and where we have assumed exact initial conditions for the step, i.e.
Yn—1 = Y(t,—1). Combining these estimates, we have

||yn - gn“ = ”yn —y(tn) — Un + y(tn)” < lyn — y(tn)H + ”gn —y(ta)| < Dh:;)z—H + O(hﬁ+2).

We therefore use the norm of the difference between y,, and ¥, as an estimate for the LTE at the step n

Ty = By —) = B Y [(F —F) 720) + (b1 =B (e 020 2.19)
i=1

2.7. Error norms 39

User Documentation for ARKODE, v5.7.0

for ARK methods, and similarly for ERK methods. Here, 8 > 0 is an error bias to help account for the error constant
D; the default value of this constant is 3 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ||T;,|| < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to determine the next
step size, the algorithms used for this purpose are described in §2.8. If the error test fails, the step is rejected and a
new step size b’ is then computed using the same error controller as for successful steps. A new attempt at the step is
made, and the error test is repeated. If the error test fails twice, then h’/h is limited above to 0.3, and limited below to
0.1 after an additional step failure. After seven error test failures, control is returned to the user with a failure message.
We note that all of the constants listed above are only the default values; each may be modified by the user.

We define the step size ratio between a prospective step h’ and a completed step h as 7, i.e. n = h’/h. This value is
subsequently bounded from above by 7. to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

etamx|1, on the first step (default is 10000),
Nmax = { growth, on general steps (default is 20),
1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

hO supplied?

compute hO to
approximately solve

1h0r2 y” 1< 2

if (nst==0): h =h0
else: h=h*eta

attempt step

etamax = 1

nel=nel + 1

if (h==hmin or ncf==maxncf): halt
eta = max(etacf, hmin/h)

i —h#*
estimate error: h=h*eta

dsm = lly_errorll

etamax = 1

nef = nef + 1

if (h==hmin or nef==maxnef): halt

eta = arkAdapt(h, hl, h2, dsm, el, €2)

il (nef >= small_nel): eta = max(ela, etamx[)
h=h*eta

nst=nst+ 1

if (ctamax==1): ecta=1

eta = arkAdapt(h, h1, h2, dsm, el, e2)
h2=hl

hi=h

c2=cl

el = dsm * bias

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when 1 € [n,ny]. The default values for this
interval are 77, = 1 and 7y = 1.5, and may be modified by the user.

We note that any choices for 7 (or equivalently, k") are subsequently constrained by the optional user-supplied bounds

40 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

hmin and hpmax. Additionally, the time-stepping algorithms in ARKODE may similarly limit 4’ to adhere to a user-
provided “TSTOP” stopping point, #op.

The time-stepping modules in ARKODE adapt the step size in order to attain local errors within desired tolerances of
the true solution. These adaptivity algorithms estimate the prospective step size h’ based on the asymptotic local error
estimates (2.18). We define the values ¢,,, €,,_1 and &,,_5 as

er = |Tell = Bllyr — Gill,

corresponding to the local error estimates for three consecutive steps, t,,—3 — tn—2 — t,—1 — t,. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKODE supports
one of two approaches for temporal error control.

First, any valid implementation of the SUNAdaptController class §12.1 may be used by ARKODE’s adaptive time-
stepping modules to provide a candidate error-based prospective step size h'.

Second, ARKODE'’s adaptive time-stepping modules currently still allow the user to define their own time step adap-
tivity function,

h/ = H(ya t7 h’n7 hn—la hn—27 EnsEn—1yEn—2, qap)7

allowing for problem-specific choices, or for continued experimentation with temporal error controllers. We note that
this support has been deprecated in favor of the SUNAdaptController class, and will be removed in a future release.

2.9 Explicit stability

For problems that involve a nonzero explicit component, i.e. f¥(¢,%) # 0 in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge—Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKODE adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which f¥(¢,%) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error toler-
ances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable number
of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller may
also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(hn) must reside within a bounded stability region, where) are the eigenvalues of the linearized operator 91 /9y,
information on the maximum stable step size is not readily available to ARKODE’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation f! may contain the stiff diffusive components and f¥ may contain the compara-
bly nonstiff advection terms. In this scenario, an explicitly stable step hex, would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

Az
[Pexp| < —

where Az is the spatial mesh size and A is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|. If a value for
|hexp| 18 supplied, it is compared against the value resulting from the local error controller, |hac|, and the eventual time
step used will be limited accordingly,

h .
W= m min{c | hexp|, |hace|}-

Here the explicit stability step factor ¢ > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.

2.9. Explicit stability 41

User Documentation for ARKODE, v5.7.0

2.10 Fixed time stepping

While both the ARKStep and ERKStep time-stepping modules are designed for tolerance-based time step adaptivity,
they additionally support a “fixed-step” mode. This mode is typically used for debugging purposes, for verification
against hand-coded Runge—Kutta methods, or for problems where the time steps should be chosen based on other
problem-specific information. In this mode, all internal time step adaptivity is disabled:

* temporal error control is disabled,
* nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),

* no check against an explicit stability condition is performed.

Note: Since temporal error based adaptive time-stepping is known to ruin the conservation property of SPRK methods,
SPRKStep employs a fixed time-step size by default.

Note: Fixed-step mode is currently required for the slow time scale in the MRIStep module.

Additional information on this mode is provided in the sections ARKStep Optional Inputs, ERKStep Optional Inputs,
SPRKStep Optional Inputs, and MRIStep Optional Inputs.

2.11 Algebraic solvers

When solving a problem involving either an implicit component (e.g., in ARKStep with f/ (t,y) # 0, or in MRIStep
with a solve-decoupled implicit slow stage), or a non-identity mass matrix (M (t) # I in ARKStep), systems of linear
or nonlinear algebraic equations must be solved at each stage and/or step of the method. This section therefore focuses
on the variety of mathematical methods provided in the ARKODE infrastructure for such problems, including nonlin-
ear solvers, linear solvers, preconditioners, iterative solver error control, implicit predictors, and techniques used for
simplifying the above solves when using different classes of mass-matrices.

2.11.1 Nonlinear solver methods

For the DIRK and ARK methods corresponding to (2.2) and (2.6) in ARKStep, and the solve-decoupled implicit slow
stages (2.14) in MRIStep, an implicit system

G(z) =0 (2.20)

must be solved for each implicit stage z;. In order to maximize solver efficiency, we define this root-finding problem
differently based on the type of mass-matrix supplied by the user.

* In the case that M = I within ARKStep, we define the residual as
G(zi) = 2 — hn AL f(t], 4, %) — as, (2.21)

where we have the data

i—1
@i = ynr+ha Y (AT P 502) + AL 0 2)] -
=1

42 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

* In the case of non-identity mass matrix M # I within ARKStep, but where M is independent of ¢, we define
the residual as

G(z) = Mz — ho AL f1 (8], 15 21) — ai, (2.22)
where we have the data
i—1
a; = Myn—l + h’n Z [Ail?jfE(tE,jv Zj) + Ail,jfl(tfl,ja Z])] .
j=1

Note: This form of residual, as opposed to G(z;) = z; — hn, AL, fI (t} ;> 2i) — a; (with a; defined appropriately),
removes the need to perform the nonlinear solve with right-hand side function f I'= M~ fI, as that would
require a linear solve with M at every evaluation of the implicit right-hand side routine.

¢ In the case of ARKStep with M dependent on ¢, we define the residual as
G(zi) = M(t])z — a;) — hy AL f1 (), 4, 1) (2.23)

n,i’

where we have the data

i—1
Qi = Yno1+hn Y {AfjfE(tfm 2) + AL (5, Zﬂ‘)} '
j=1

Note: As above, this form of the residual is chosen to remove excessive mass-matrix solves from the nonlinear
solve process.

* Similarly, in MRIStep (that always assumes M = I), we have the residual

{k}
G(ZZ) = Z; — hS ’YZ”L fl(tg D) Zz) —a; = 0 (224)
k+1 '
E>0
where
i—1 fy{k}
— S 2] I/4S
a; =2z;—1+ h Z m f (tn,_ﬁzj)
j=1 \k>0

Upon solving for z;, method stages must store f© (tf j»%i)and f 1 (tTIL j»#i)- Itis possible to compute the latter without
evaluating f I after each nonlinear solve. Consider, for example, (2.21) which implies

Zi — Q;

T haAlL

FIth 5. 2) (2.25)

when z; is the exact root, and similar relations hold for non-identity mass matrices. This optimization can be enabled by
ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs () with the second argument in either
function set to SUNTRUE. Another factor to consider when using this option is the amplification of errors from the
nonlinear solver to the stages. In (2.25), nonlinear solver errors in z; are scaled by 1/ (hnAZIl) By evaluating f! on
zi, errors are scaled roughly by the Lipshitz constant L of the problem. If hnAfﬂ-L > 1, which is often the case when
using implicit methods, it may be more accurate to use (2.25). Additional details are discussed in [80].

2.11. Algebraic solvers 43

User Documentation for ARKODE, v5.7.0

In each of the above nonlinear residual functions, if f!(¢,y) depends nonlinearly on y then (2.20) corresponds to a
nonlinear system of equations; if instead f7(¢,y) depends linearly on 3 then this is a linear system of equations.

To solve each of the above root-finding problems ARKODE leverages SUNNonlinearSolver modules from the under-
lying SUNDIALS infrastructure (see section §11). By default, ARKODE selects a variant of Newton’s method,

Zi(erl) _ Zi(m) n 5(m+1)’ (2.26)

where m is the Newton iteration index, and the Newton update 6 1) in turn requires the solution of the Newton linear
system

A(th A gD =~ (o) (2.27)
in which
A(t,z) = M(t) —vJ(t,2), J(t,z2)= %, and = h, Al (2.28)
within ARKStep, or
Alt,z) =~ T —~J(t,z), J(t z2)= W, and ~y=h"° 2 Iﬁ (2.29)

within MRIStep.

In addition to Newton-based nonlinear solvers, the SUNDIALS SUNNonlinearSolver interface allows solvers of fixed-
point type. These generally implement a fixed point iteration for solving an implicit stage z;,

?

2 =@ () =2 - Mt)G () m=01,. (2.30)

Unlike with Newton-based nonlinear solvers, fixed-point iterations generally do not require the solution of a linear
system involving the Jacobian of f at each iteration.

Finally, if the user specifies that f(¢,y) depends linearly on y in ARKStep or MRIStep and if the Newton-based
SUNNonlinearSolver module is used, then the problem (2.20) will be solved using only a single Newton iteration. In this
case, an additional user-supplied argument indicates whether this Jacobian is time-dependent or not, signaling whether
the Jacobian or preconditioner needs to be recomputed at each stage or time step, or if it can be reused throughout the
full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of linear systems involving the Jacobian of f, each iteration may be significantly less costly than their
Newton counterparts. However, this can come at the cost of slower convergence (or even divergence) in comparison with
Newton-like methods. While a Newton-based iteration is the default solver in ARKODE due to its increased robustness
on very stiff problems, we strongly recommend that users also consider the fixed-point solver when attempting a new
problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction zi(o) that is
computed explicitly from previously-computed data (e.g. ¥, —2, Yn—1, and z; where j < ¢). Additional information on
the specific predictor algorithms is provided in section §2.11.5.

44 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

2.11.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKODE leverages another component of the shared SUNDIALS
infrastructure, the “SUNLinearSolver,” described in section §10. These linear solver modules are grouped into two
categories: matrix-based linear solvers and matrix-free iterative linear solvers. ARKODE’s interfaces for linear solves
of these types are described in the subsections below.

2.11.2.1 Matrix-based linear solvers

In the case that a matrix-based linear solver is selected, a modified Newton iteration is utilized. In a modified Newton
iteration, the matrix A is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

At 2) 6mt) = _q (z§m>) 7 2.31)
in which
A(t,2)~ M(t) —4J(t,2), and 7=hA!, (ARKStep) (2.32)
or
{k}
A2~ T-7J(F2), and 7=hY " (MRIStep). 2.33)
k>0 k + 1

Here, the solution Z, time £, and step size h upon which the modified equation rely, are merely values of these quantities
from a previous iteration. In other words, the matrix Ais only computed rarely, and reused for repeated solves. As
described below in section §2.11.2.3, the frequency at which Ais recomputed defaults to 20 time steps, but may be
modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.31), the Jacobian J may be supplied
by a user routine, or approximated internally by finite-differences. In the case of differencing, we use the standard
approximation

»It,era-e- — »It,z
JZ,](t,Z)%fZ(JO—]‘) fz()’
J

where e; is the j-th unit vector, and the increments o; are given by

oj = max{ﬁ|zj|,00}.
j

W

Here U is the unit roundoff, o is a small dimensionless value, and w; is the error weight defined in (2.16). In the dense
case, this approach requires N evaluations of £, one for each column of .J. In the band case, the columns of .J are
computed in groups, using the Curtis-Powell-Reid algorithm, with the number of f! evaluations equal to the matrix
bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

2.11. Algebraic solvers 45

User Documentation for ARKODE, v5.7.0

2.11.2.2 Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
A is not itself constructed since the algorithms only require the product of this matrix with a given vector. Additionally,
each Newton system (2.27) is not solved completely, since these linear solvers are iterative (hence the “inexact” in the
name). As a result. for these linear solvers A is applied in a matrix-free manner,

At,z)v=M{)v —~vJ(t, z)v.

The mass matrix-vector products Mv must be provided through a user-supplied routine; the Jacobian matrix-vector
products Jv are obtained by either calling an optional user-supplied routine, or through a finite difference approximation
to the directional derivative:

itz +ov) — fi(t, 2)

t ~
J(t, z)v . ,

where we use the increment o = 1/||v|| to ensure that ||ov| = 1.

As with the modified Newton method that reused .A between solves, the inexact Newton iteration may also recompute
the preconditioner P infrequently to balance the high costs of matrix construction and factorization against the reduced
convergence rate that may result from a stale preconditioner.

2.11.2.3 Updating the linear solver

In cases where recomputation of the Newton matrix Aor preconditioner P is lagged, these structures will be recomputed
only in the following circumstances:

* when starting the problem,
* when more than msbp = 20 steps have been taken since the last update (this value may be modified by the user),

 when the value 7 of ~y at the last update satisfies |v/5 — 1| > Avynae = 0.2 (this value may be modified by the
user),

* when a non-fatal convergence failure just occurred,
* when an error test failure just occurred, or
« if the problem is linearly implicit and « has changed by a factor larger than 100 times machine epsilon.

When an update of A or P occurs, it may or may not involve a reevaluation of J (in fl) or of Jacobian data (in P),
depending on whether errors in the Jacobian were the likely cause for the update. Reevaluating J (or instructing the
user to update P) occurs when:

e starting the problem,
» more than msbj = 50 steps have been taken since the last evaluation (this value may be modified by the user),

* a convergence failure occurred with an outdated matrix, and the value 4 of ~ at the last update satisfies
/v —1[>02,

* a convergence failure occurred that forced a step size reduction, or
« if the problem is linearly implicit and « has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver conver-
gence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user may
specify that the system matrix .A and/or preconditioner P should be recomputed more frequently.

As will be further discussed in section §2.11.4, in the case of most Krylov methods, preconditioning may be applied
on the left, right, or on both sides of .4, with user-supplied routines for the preconditioner setup and solve operations.

46 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

2.11.3 Iteration Error Control

2.11.3.1 Nonlinear iteration error control

ARKODE provides a customized stopping test to the SUNNonlinearSolver module used for solving equation (2.20).
This test is related to the temporal local error test, with the goal of keeping the nonlinear iteration errors from interfering

with local error control. Denoting the final computed value of each stage solution as zi(m), and the true stage solution
(m)

solving (2.20) as z;, we want to ensure that the iteration error z; — z; ’ is “small” (recall that a norm less than 1 is

already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate R; of the nonlinear iteration. We initialize ; = 1, and reset it

to this value whenever A or P are updated. After computing a nonlinear correction §("™ = zfm) — zi(m_l), ifm >0
we update R; as

R; < max {chi,

s -2

where the default factor ¢, = 0.3 is user-modifiable.

Let yﬁlm) denote the time-evolved solution constructed using our approximate nonlinear stage solutions, zi(m), and let
yﬁ,,oo) denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate

‘ ngoo) o y7(Lm)H ~ max‘ Zi(m-&-l) o Zz(m)H ~ max R; Hzi(m) _ Zi(m—l)H — max R, 5(m)H)
Therefore our convergence (stopping) test for the nonlinear iteration for each stage is
R; Hé(’”) <e (2.35)

where the factor € has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the
nonlinear iteration to be divergent if any of the ratios

Ps /18D > raae (2.36)

with m > 0, where rg;, defaults to 2.3. If convergence fails in the nonlinear solver with 4 current (i.e., not lagged),
we reduce the step size h,, by a factor of 1.y = 0.25. The integration will be halted after max,.r = 10 convergence
failures, or if a convergence failure occurs with h,, = hp;,. However, since the nonlinearity of (2.20) may vary
significantly based on the problem under consideration, these default constants may all be modified by the user.

2.11.3.2 Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.27), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector (") using the preconditioned residual vector, e.g.
r = PAS(™ 4+ PG for the case of left preconditioning (the role of the preconditioner is further elaborated in the next
section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error and
local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

€€

10"
Here € is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter €,
are typically useful for strongly nonlinear or very stifft ODE systems, while easier ODE systems may benefit from a
value closer to 1. The default value is e, = 0.05, which may be modified by the user. We note that for linearly implicit
problems the tolerance (2.37) is similarly used for the single Newton iteration.

Ir]| < (2.37)

2.11. Algebraic solvers 47

User Documentation for ARKODE, v5.7.0

2.11.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.20), an iterative method is used repeatedly
to solve linear systems of the form Ax = b, where x is a correction vector and b is a residual vector. If this iterative
method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system .Ax = b can be preconditioned using any one of:

(P' Az =P ' [left preconditioning],
(AP YHYPz =10 [right preconditioning],
(P, 'APR Y Pre = P;'b [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix P~* A, AP~!, or P; ' AP} ", instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product Py, Py in
the third case, should in some sense approximate the system matrix .A. Simultaneously, in order to be cost-effective the
matrix P (or matrices P, and Pr) should be reasonably efficient to evaluate and solve. Finding an optimal point in this
trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-dependent
(for example, see [20] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices .4 we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product P = Pr Pr). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is
the product of two matrices, we recommend that preconditioning be done either on the left only or the right only, rather
than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric matrix A,
since the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as P~1/2AP~1/2,

Typical preconditioners are based on approximations to the system Jacobian, J = 0 f/9dy. Since the Newton iteration
matrix involved is A = M — ~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = M — ~.J. Because the Krylov iteration occurs within a Newton iteration and further also within a time
integration, and since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical features of the system. We have found that the
combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.11.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses for each
implicit Runge—Kutta stage, zi(o). As is well-known with nonlinear solvers, the selection of a good initial guess can
have dramatic effects on both the speed and robustness of the solve, making the difference between rapid quadratic
convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided. In each

case, the stage guesses zi(o) are constructed explicitly using readily-available information, including the previous step
solutions y,_1 and y, 2, as well as any previous stage solutions z;, 7 < ¢. In most cases, prediction is performed
by constructing an interpolating polynomial through existing data, which is then evaluated at the desired stage time to
provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically, for most Runge—Kutta

methods each stage solution satisfies

2 =~ y(th,i)7

(similarly for MRI methods z; ~ y(tii)), so by constructing an interpolating polynomial p, (¢) through a set of existing
data, the initial guess at stage solutions may be approximated as

20 = py(tL). (2.38)

48 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

As the stage times for MRI stages and implicit ARK and DIRK stages usually have non-negative abscissae (i.e., c§ > 0),
it is typically the case that tﬂy ; (resp., tg’ ;) is outside of the time interval containing the data used to construct Pq(t),
hence (2.38) will correspond to an extrapolant instead of an interpolant. The dangers of using a polynomial interpolant
to extrapolate values outside the interpolation interval are well-known, with higher-order polynomials and predictions
further outside the interval resulting in the greatest potential inaccuracies.

The prediction algorithms available in ARKODE therefore construct a variety of interpolants p,(¢), having different
polynomial order and using different interpolation data, to support “optimal” choices for different types of problems, as
described below. We note that due to the structural similarities between implicit ARK and DIRK stages in ARKStep,
and solve-decoupled implicit stages in MRIStep, we use the ARKStep notation throughout the remainder of this section,
but each statement equally applies to MRIStep (unless otherwise noted).

2.11.5.1 Trivial predictor
The so-called “trivial predictor” is given by the formula
Po(t) = Yn-1-
While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying

solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints whose
violation may cause illegal solution values (e.g. a negative density or temperature).

2.11.5.2 Maximum order predictor
At the opposite end of the spectrum, ARKODE’s interpolation modules discussed in section §2.2 can be used to con-

struct a higher-order polynomial interpolant, p,(t). The implicit stage predictor is computed through evaluating the
highest-degree-available interpolant at each stage time t{m.

2.11.5.3 Variable order predictor
This predictor attempts to use higher-degree polynomials p,(¢) for predicting earlier stages, and lower-degree inter-
polants for later stages. It uses the same interpolation module as described above, but chooses the polynomial degree

adaptively based on the stage index ¢, under the assumption that the stage times are increasing, i.e. c§ < cé for j < k:

g =max{qmax —t+1, 1}, i=1,...,s.

2.11.5.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

h
polynomial interpolant to use for prediction. Denoting 7 = ¢/ —"—, the polynomial degree ¢; is chosen as:
n—1
4 = max, 1 7 < g,
’ 1, otherwise.

2.11. Algebraic solvers 49

User Documentation for ARKODE, v5.7.0

2.11.5.5 Bootstrap predictor (M = I only) — deprecated

This predictor does not use any information from the preceding step, instead using information only within the current
step [tn—1,tn]. In addition to using the solution and ODE right-hand side function, y,,—1 and f(t,—1,Yn—1), this
approach uses the right-hand side from a previously computed stage solution in the same step, f(¢,—1 + c§h, zj) to
construct a quadratic Hermite interpolant for the prediction. If we define the constants h = c§ hand 7 = c!h, the
predictor is given by

2 2

z2) = Yn 1+ [T— —= tne1,Yn—1) + —=f(tn_1 + h,z;).
i Yn—1 (2h) J(tn—1,Yn—1) th(1)

For stages without a nonzero preceding stage time, i.e. c§ # 0 for j < 1, this method reduces to using the trivial

predictor z() = = y,—1. For stages having multiple preceding nonzero c§ ,

to minimize the level of extrapolation used in the prediction.

we choose the stage having largest c§ value,

We note that in general, each stage solution z; has significantly worse accuracy than the time step solutions y,_1, due
to the difference between the stage order and the method order in Runge—Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [t,,—2, t;—1].

Although this approach could be used with non-identity mass matrix, support for that mode is not currently imple-
mented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial predictor.

Note: This predictor has been deprecated, and will be removed from a future release.

2.11.5.6 Minimum correction predictor (ARKStep, M/ = I only) — deprecated

The final predictor is not interpolation based; instead it utilizes all existing stage information from the current step to
create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.4) and (2.20),
each stage solves a nonlinear equation

i—1

Zi = Yn-—1 +hnZAfjfE n,j1 % +h7LZA n]’)
j=1
G(zi)zzthnAI fl(n“)7(11:()
This prediction method merely computes the predictor z; as

i—1
Zi:ynfl'i‘hnZAiE,jfE n,jr % +h ZA ng>)7

=1

Z; = Q.

Again, although this approach could be used with non-identity mass matrix, support for that mode is not currently
implemented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial
predictor.

Note: This predictor has been deprecated, and will be removed from a future release.

50 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

2.11.6 Mass matrix solver (ARKStep only)
Within the ARKStep algorithms described above, there are multiple locations where a matrix-vector product
b= Mv (2.39)
or a linear solve
x=DM""1b (2.40)

is required.

Of course, for problems in which M = I both of these operators are trivial. However for problems with non-identity
mass matrix, these linear solves (2.40) may be handled using any valid SUNLinearSolver module, in the same manner
as described in the section §2.11.2 for solving the linear Newton systems.

For ERK methods involving non-identity mass matrix, even though calculation of individual stages does not require an
algebraic solve, both of the above operations (matrix-vector product, and mass matrix solve) may be required within
each time step. Therefore, for these users we recommend reading the rest of this section as it pertains to ARK methods,
with the obvious simplification that since f¥ = f and f! = 0 no Newton or fixed-point nonlinear solve, and no overall
system linear solve, is involved in the solution process.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type of
matrix (dense, band, sparse, or custom) for the Jacobian matrix J must match the type of mass matrix M, since these
are combined to form the Newton system matrix A. When matrix-based methods are employed, the user must supply
a routine to compute M (t) in the appropriate form to match the structure of A, with a user-supplied routine of type
ARKLsMassFn (). This matrix structure is used internally to perform any requisite mass matrix-vector products (2.39).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, Mwv.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass matrix
systems (2.40). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned linear
residual satisfies

7]l < ere, (2.41)

where again, € is the nonlinear solver tolerance parameter from (2.35). When using iterative system and mass matrix
linear solvers, e, may be specified separately for both tolerances (2.37) and (2.41).

In the algorithmic descriptions above there are five locations where a linear solve of the form (2.40) is required: (a)
at each iteration of a fixed-point nonlinear solve, (b) in computing the Runge—Kutta right-hand side vectors ﬁE and
Ai[, (c) in constructing the time-evolved solution y,,, (d) in estimating the local temporal truncation error, and (e) in
constructing predictors for the implicit solver iteration (see section §2.11.5.2). We note that different nonlinear solver
approaches (i.e., Newton vs fixed-point) and different types of mass matrices (i.e., time-dependent versus fixed) result
in different subsets of the above operations. We discuss each of these in the bullets below.

* When using a fixed-point nonlinear solver, at each fixed-point iteration we must solve

?

Mt) A" =G (M), m=01,...

(m+1)

i .

for the new fixed-point iterate, z

* In the case of a time-dependent mass matrix, to construct the Runge—Kutta right-hand side vectors we must solve
Mg fF = [P z) and M@,)f] = f(th =)

n,e? n,.?

for the vectors fiE and ff .

2.11. Algebraic solvers 51

User Documentation for ARKODE, v5.7.0

* For fixed mass matrices, we construct the time-evolved solution y,, from equation (2.4) by solving

My, = My, 1+ hy Z (bF 2t 5 2) +] f1 (8, 55 20))
=1

S

M(Yn = yn-1) = hnz (OF fE (5 2i) + 0] f1(th 5 20))

S

= Dy (BF Pt 5 20) + 0 (00 20))
=1

for the update v = y,, — Yn—1-

Similarly, we compute the local temporal error estimate 7,, from equation (2.19) by solving systems of the form
MTn—hZ[(bE bE) St) + (b =) 1 (th)] (242)

¢ For problems with either form of non-identity mass matrix, in constructing dense output and implicit predictors of
degree 2 or higher (see the section §2.11.5.2 above), we compute the derivative information f}, from the equation

M(tn)fn = fE(tnvyn) + fI(tna yn)

In total, for problems with fixed mass matrix, we require only two mass-matrix linear solves (2.40) per attempted
time step, with one more upon completion of a time step that meets the solution accuracy requirements. When fixed
time-stepping is used (h,, = h), the solve (2.42) is not performed at each attempted step.

Similarly, for problems with time-dependent mass matrix, we require 2s mass-matrix linear solves (2.40) per attempted
step, where s is the number of stages in the ARK method (only half of these are required for purely explicit or purely
implicit problems, (2.5) or (2.6)), with one more upon completion of a time step that meets the solution accuracy
requirements.

In addition to the above totals, when using a fixed-point nonlinear solver (assumed to require m iterations), we will
need an additional ms mass-matrix linear solves (2.40) per attempted time step (but zero linear solves with the system
Jacobian).

2.12 Rootfinding

All of the time-stepping modules in ARKODE also support a rootfinding feature. This means that, while integrating
the IVP (2.1), these can also find the roots of a set of user-defined functions g; (¢, y) that depend on ¢ and the solution
vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found to have a root in
any given interval, the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(t, y(t)),
denoted g; (t) for short. If a user root function has a root of even multiplicity (no sign change), it will almost certainly
be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should reformulate the root
function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [49]. In addition, each time g is evaluated,
ARKODE checks to see if g;(¢t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is

52 Chapter 2. Mathematical Considerations

User Documentation for ARKODE, v5.7.0

found at a point ¢, ARKODE computes g(t + ¢) for a small increment J, slightly further in the direction of integration,
and if any g;(t +) = 0 also, ARKODE stops and reports an error. This way, each time ARKODE takes a time step, it
is guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKODE
has an interval (ty,, t,;] in which roots of the g;(t) are to be sought, such that ty; is further ahead in the direction of
integration, and all g;(¢),) # 0. The endpoint ¢y; is either ¢,,, the end of the time step last taken, or the next requested
output time ¢, if this comes sooner. The endpoint #y, is either ¢,,_1, or the last output time tqy (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,
if an exact zero was found. The algorithm checks g(ty;) for zeros, and it checks for sign changes in (¢, ;). If no sign
changes are found, then either a root is reported (if some g; (tp;) = 0) or we proceed to the next time interval (starting at
tni). If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance,
given by

T =100U (|t,.| + |R|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (tni)| / |9i(tni) — 9:(ti)], corresponding to the closest to ¢, of the secant method
values. Ateach pass through the loop, a new value ¢4 is set, strictly within the search interval, and the values of g; (tmiq)
are checked. Then either ¢, or ty; is reset to ¢,ig according to which subinterval is found to have the sign change. If
there is none in (%o, tmia) but some g;(tmia) = 0, then that root is reported. The loop continues until |ty — 0] < T,
and then the reported root location is tp;. In the loop to locate the root of g;(t), the formula for ¢4 is

tid = thi —
™ " gi(tn) — agi(to)’

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making t.,q the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward t), vs toward ty;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides
were the same, « is halved (if on the low side) or doubled (if on the high side). The value of ¢, is closer to ¢}, when
a < 1 and closer to tp; when o > 1. If the above value of tq is within 7/2 of ¢, or tp;, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

Finally, we note that when running in parallel, ARKODE'’s rootfinding module assumes that the entire set of root
defining functions g;(t, y) is replicated on every MPI rank. Since in these cases the vector y is distributed across ranks,
it is the user’s responsibility to perform any necessary communication to ensure that g; (¢, y) is identical on each rank.

2.13 Inequality Constraints

The ARKStep and ERKStep modules in ARKODE permit the user to impose optional inequality constraints on individ-
ual components of the solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
ory; < 0. The constraint satisfaction is tested after a successful step and before the error test. If any constraint fails, the
step size is reduced and a flag is set to update the Jacobian or preconditioner if applicable. Rather than cutting the step
size by some arbitrary factor, ARKODE estimates a new step size h’ using a linear approximation of the components
in y that failed the constraint test (including a safety factor of 0.9 to cover the strict inequality case). If a step fails to
satisfy the constraints 10 times (a value which may be modified by the user) within a step attempt, or fails with the
minimum step size, then the integration is halted and an error is returned. In this case the user may need to employ
other strategies as discussed in §5.2.2.2 and §5.3.2.2 to satisfy the inequality constraints.

2.13. Inequality Constraints 53

User Documentation for ARKODE, v5.7.0

2.14 Relaxation Methods

When the solution of (2.1) is conservative or dissipative with respect to a smooth convex function &(y(t)), it is desirable
to have the numerical method preserve these properties. That is £(y,,) = &(yn—1) = ... = &(yo) for conservative
systems and £(y,,) < &(yn—1) for dissipative systems. For examples of such problems, see the references below and
the citations there in.

For such problems, ARKODE supports relaxation methods [55, 61, 69, 70] applied to ERK, DIRK, or ARK methods
to ensure dissipation or preservation of the global function. The relaxed solution is given by

Yr =Yn—1 +rd =71Yp + (1 — r)yn_1 (2.43)

where d is the update to y,, (i.e., hy, >0, (bF fF + bl fI) for ARKStep and h,, 3, b; f; for ERKStep) and 7 is the
relaxation factor selected to ensure conservation or dissipation. Given an ERK, DIRK, or ARK method of at least
second order with non-negative solution weights (i.e., b; > 0 for ERKStep or blE > 0 and biI > 0 for ARKStep), the
factor r is computed by solving the auxiliary scalar nonlinear system

F(r)=&(yn—1+1rd) —&(Yyn—1) —re =0 (2.44)

at the end of each time step. The estimated change in & is given by e = h,, Y 5, (€'(2:),bF fE + bl f]) where ¢’ is the
Jacobian of &.

Two iterative methods are provided for solving (2.44), Newton’s method and Brent’s method. When using Newton’s
method (the default), the iteration is halted either when the residual tolerance is met, /' (r(k)) < €relax_res, OF When

the difference between successive iterates satisfies the relative and absolute tolerances, |57(,k)\ = |pR) — pl-1)| <
erelax_rtoﬂr(k*l)\ + €relax_atol- Brent’s method applies the same residual tolerance check and additionally halts when
the bisection update satisfies the relative and absolute tolerances, [0.5(7. —1%)| < €relax_rtol [T |+0.5€rclax_atol Where
r. and %) bound the root.

If the nonlinear solve fails to meet the specified tolerances within the maximum allowed number of iterations, the step
size is reduced by the factor 7, (default 0.25) and the step is repeated. Additionally, the solution of (2.44) should be
r =1+ O(h4~1) for a method of order ¢ [70]. As such, limits are imposed on the range of relaxation values allowed
(i.e., limiting the maximum change in step size due to relaxation). A relaxation value greater than 7, (default 1.2) or
less than r,;, (default 0.8), is considered as a failed relaxation application and the step will is repeated with the step
size reduced by 7;¢.

For more information on utilizing relaxation Runge—Kutta methods, see §5.3.3 and §5.2.3.

54 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 ARKODE organization

The ARKODE package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKODE package is shown in Fig. 3.3. The central integration modules, implemented
in the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c, arkode_arkstep.c, arkode_erkstep.
c, arkode_mristep.h, and arkode_butcher. c, deal with the evaluation of integration stages, the nonlinear solvers,
estimation of the local truncation error, selection of step size, and interpolation to user output points, among other
issues. ARKODE supports SUNNonlinearSolver modules in either root-finding or fixed-point form (see section §11)
for any nonlinearly implicit problems that arise in computing each internal stage. When using Newton-based nonlinear
solvers, or when using a non-identity mass matrix M # I, ARKODE has flexibility in the choice of method used
to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers, or any user

55

User Documentation for ARKODE, v5.7.0

[CVODE] [CVODES] [ARKODE] [

J |

IDA

IDAS

] [KINSOL]

———-h

[
[
[
[
[
[
[
[

Vectors Matrlces Linear Solvers Nonllnear Solvers
Serial Parallel (MPI)] [Dense Band] Matrix-based 1 Fixed Point
PThreads] [OpenMP] [Sparse] [S';Jgf‘r)l.cu] [e][e]
LAPACK LAPACK
OpenMP DEV] [CUDA] [CcuSPARSE] [MAGMA Dense] [Dense][Band]
S LU
HIP] [RAJA] [Ginkgo Dense] [oneMKL Dense] [oy] [T]
Kokkos] [sycL] [s“[',’lesf:.‘u] [CuSOLVER]
ManyVector] [MPI ManyVectot] [MAGMA Dense] [Ginkgo]
MPI + X] [T:;:’ye';] [oneMKL Dense] [Kokkok Kernels]
PETSc] [Trilinos] Matrix-free
[SPGMR] [SPFGMR]
[SPTFQMR] [SPBCG]

Fig. 3.1: High-level diagram of the SUNDIALS suite.

56

Chapter 3. Code Organization

User Documentation for ARKODE, v5.7.0

E
:
:

> arkode | || arkode |
—>| cvode | —>| cvode |
—’| cvodes | —>| cvodes |
— ida | ida |
—>| idas | —>| idas |
L[kinsol | *| kinsol |

I

I

arkode | —>| arkode |
[z]
[femix |[fmod |
N
sundials | —’| idas |
| fmod |
> sunmemory | m
" —>| nvector
—’| sunnonlinsol |
—>| sundials

Fig. 3.2: Directory structure of the SUNDIALS source tree.

N e -

3.1. ARKODE organization

57

User Documentation for ARKODE, v5.7.0

problem with M = I, one (or more) of the linear system solver modules should be specified by the user; this/these are
then invoked as needed during the integration process.

SUNDIALS

ARKODE
! }
ARKLS ARKNLS
Linear Solver Interface Nonlinear Solver Interface
\ 4 * ‘ \ 4
N_Vector SUNMatrix SUNLinearSolver SUNNonlinearSolver
Interface Interface Interface Interface
v v v v
| Vector | | Matrix | | Linear Solver | | Nonlinear Solver |
A\ 4

Preconditioner Modules
(ARKBBDPRE | [ARKBANDPRE |

Fig. 3.3: ARKODE organization: Overall structure of the ARKODE package. Modules specific to ARKODE are the
timesteppers (ARKODE), linear solver interfaces (ARKLS), nonlinear solver interfaces (ARKNLS), and precondition-
ers (ARKBANDPRE and ARKBBDPRE); all other items correspond to generic SUNDIALS vector, matrix, and solver
modules.

For solving these linear systems, ARKODE’s linear solver interface supports both direct and iterative linear solvers
adhering to the generic SUNLINSOL API (see §10). These solvers may utilize a SUNMATRIX object for storing
Jacobian information, or they may be matrix-free. Since ARKODE can operate on any valid SUNLINSOL implemen-
tation, the set of linear solver modules available to ARKODE will expand as new SUNLINSOL modules are developed.

For preconditioned iterative methods with either the system or mass matrix solves, the preconditioning must be supplied
by the user in two phases: setup and solve. While there is no default choice of preconditioner for generic problems, the
references [20] and [23], together with the example and demonstration programs included with ARKODE and CVODE,
offer considerable assistance in building simple preconditioners.

ARKODE also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear solvers.
The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures NVECTOR_SE-
RIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient approxima-
tion to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second preconditioner
module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL, and gen-
erates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single processor.

All state information used by ARKODE to solve a given problem is saved in a single opaque memory structure, and a
pointer to that structure is returned to the user. For C, C++ and Fortran 2003 applications there is no global data in the
ARKODE package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved
in a separate data structure, a pointer to which resides in the ARKODE memory structure. State information specific
to the linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures,
that are returned to the user upon construction, and subsequently provided to ARKODE for use.

58 Chapter 3. Code Organization

Chapter 4

Using SUNDIALS

As discussed in §3, the six solvers packages (CVODE(S), IDA(S), ARKODE, KINSOL) that make up SUNDIALS
are built upon common classes/modules for vectors, matrices, and algebraic solvers. In addition, the six packages all
leverage some other common infrastructure, which we discuss in this section.

4.1 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

* ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

e Will return < 0O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

(continues on next page)

59

User Documentation for ARKODE, v5.7.0

(continued from previous page)

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free(SUNContext *ctx)
Frees the SUNContext object.

Arguments:
e ctx — pointer to a valid SUNContext object, NULL upon successful return.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
* ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.

60 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

Returns:
e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —a valid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.1.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

¢ Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Ttis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;

(continues on next page)

4.1. The SUNContext Type 61

User Documentation for ARKODE, v5.7.0

(continued from previous page)

int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx);
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.

62 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

4.1.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>

{

public:

explicit Context(void* comm = nullptr)

{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

1

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.1. The SUNContext Type

63

User Documentation for ARKODE, v5.7.0

4.2 SUNDIALS Status Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.2.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPI is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §14.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).

64 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

4.2.2 Logger API

The central piece of the Logger API is the SUNLogger type:
typedef struct SUNLogger_ *SUNLogger

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE

Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (void *comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (void *comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

* comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.

4.2. SUNDIALS Status Logging 65

User Documentation for ARKODE, v5.7.0

¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger —a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger — a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

* Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:

* logger —a SUNLogger object.

66 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

e 1vl — the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
* label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

e 1v1 - the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger —a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

4.2. SUNDIALS Status Logging 67

User Documentation for ARKODE, v5.7.0

4.2.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.3 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [16] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.3.2).

4.3.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §14.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note: The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.

68 Chapter 4. Using SUNDIALS

https://software.llnl.gov/Caliper/

User Documentation for ARKODE, v5.7.0

4.3.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDTIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e. an instance of the struct

typedef struct _SUNProfiler *SUNProfiler

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(void *comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

* p—a SUNProfiler object

4.3. Performance Profiling 69

User Documentation for ARKODE, v5.7.0

* name — a name for the profiling region
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime (SUNProfiler p, const char *name, double *time)

Get the elapsed time for the timer “name” in seconds.
Arguments:

* p—a SUNProfiler object

* name — the name for the profiling region of interest

e time — upon return, the elapsed time for the timer
Returns:

* Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)

Get the timer resolution in seconds.
Arguments:

e p—a SUNProfiler object

e resolution — upon return, the resolution for the timer
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
e fp — the file handler to print to
Returns:
* Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

e p—a SUNProfiler object

70 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.3.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

JE L

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

umax = N_VMaxNorm(u) ;

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &4

4.3.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.4 SUNDIALS Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ [en — allocated length of the version character array.

Return value:

e (if successful

4.4. SUNDIALS Version Information 71

User Documentation for ARKODE, v5.7.0

* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *1abel, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
» major — SUNDIALS release major version number.
* minor — SUNDIALS release minor version number.
* patch — SUNDIALS release patch version number.
* label — string to hold the SUNDIALS release label.
¢ len — allocated length of the label character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5 SUNDIALS Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, and farkode_mristep_mod modules provide in-
terfaces to the ARKStep, ERKStep, and MRIStep integrators respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.

¢ IDA via the fida_mod module.
¢ IDAS via the fidas_mod module.
¢ KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fcvode_mod
use fnvector_openmp_mod

72 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fnvecpenmp_mod.<so|a>,
libsundials_nvecopenmp.<so|a>, libsundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.5.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.5.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation (§8, §9, §10, and §11 respectively). For details
on where the Fortran 2003 module (.mod) files and libraries are installed see §14.

The Fortran 2003 interface modules were generated with SWIG Fortran [54], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module

Fortran 2003 Module Name

ARKODE
ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP

CVODE

CVODES

IDA

IDAS

KINSOL

NVECTOR
NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE
SUNMATRIX_SPARSE
SUNLINSOL
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE

farkode_mod
farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
fcvode_mod
fcvodes_mod

fida_mod

fidas_mod

fkinsol_mod
fsundials_nvector_mod
fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsundials_matrix_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod
Not interfaced

Not interfaced
fsunmatrix_sparse_mod
fsundials_linearsolver_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod
Not interfaced

Not interfaced

continues on next page

4.5. SUNDIALS Fortran Interface

73

User Documentation for ARKODE, v5.7.0

Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsundials_nonlinearsolver_mod
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.5.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the

type equivalencies with the parameter direction in mind.

is double-precision the sunindextype size is 64-bits.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)

double* return real (c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(¥*)

long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real (c_double), dimension(*)
realtype*® return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
realtypel[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

continues on next page

74

Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

Table 4.2 — continued from previous page

C Type Parameter Direction Fortran 2003 type

N_Vector return type(N_Vector), pointer
SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

e in, inout, out, return type(c_ptr)

1SS in, inout, out, return type(c_ptr)

TSI in, inout, out, return type(c_ptr)

4.5.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.5.1 discusses
equivalencies of data types in the two languages.

4.5.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.5.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

4.5. SUNDIALS Fortran Interface 75

User Documentation for ARKODE, v5.7.0

N_Vector x;
realtype* xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial(N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real (c_double) :: xdata(N)
integer(c_long) :: leniw(l), lenrw(l)

! create a new serial vector
X => FN_VNew_Serial (x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.5.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

76 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.5.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.5.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type(c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1t A
type(N_Vector), pointer i1 x, b

! Disassociate A
A => nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
! Therefore, we cannot pass a c_null ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.5.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possi-
ble to directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages
with sensitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIn-
dexVectorArray () that can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, Xx);

(continues on next page)

4.5. SUNDIALS Fortran Interface 77

User Documentation for ARKODE, v5.7.0

(continued from previous page)
/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, X)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §8.1.1.

4.5.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_futils_mod.

FILE *SUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.
Arguments:

e filename — the path to the file, that should have Fortran type character (kind=C_CHAR, len=%).
There are two special filenames: stdout and stderr — these two filenames will result in output going
to the standard output file and standard error file, respectively.

* mode — the I/O mode to use for the file. This should have the Fortran type character (kind=C_CHAR,
len=%*). The string begins with one of the following characters:

r to open a text file for reading

— r+ to open a text file for reading/writing

— wto truncate a text file to zero length or create it for writing

— w+ to open a text file for reading/writing or create it if it does not exist

— ato open a text file for appending, see documentation of fopen for your system/compiler

— a+toopen atext file for reading/appending, see documentation for fopen for your system/compiler
Return value:

¢ The function returns a type (C_PTR) which holds a C FILE*.

78 Chapter 4. Using SUNDIALS

22

23

24

25

User Documentation for ARKODE, v5.7.0

void SUNDIALSFileClose (fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Arguments:

e fp — the C FILE* that was previously obtained from fopen. This should have the Fortran type
type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALSFileOpen() then
that stream will not be closed by this function.

4.5.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran
18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.5.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v = yarr(2)

(continues on next page)

4.5. SUNDIALS Fortran Interface 79

User Documentation for ARKODE, v5.7.0

(continued from previous page)

! fill in the RHS function:

P[0 0]*[(-1+ur2-r(t))/(2*w] + [0]
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.6 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs (see Chapters §8, §9, §10, and §11) or through user-supplied callback functions. Thus,
under the model, the overall structure of the user’s calling program, and the way users interact with the SUNDIALS
packages is similar to using SUNDIALS in CPU-only environments.

4.6.1 SUNDIALS GPU Programming Model

As described in [13], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §8.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDI-
ALS operates on data through these APIs.

80 Chapter 4. Using SUNDIALS

User Documentation for ARKODE, v5.7.0

In addition, SUNDIALS provides a memory management helper module (see §13) to support applications which im-

plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

oneAPI Unmanaged Memory UVM

Module CUDA ROCn/HIP
NVECTOR_CUDA X

NVECTOR_HIP X X
NVECTOR_SYCL X3 X3
NVECTOR_RAJA X X
NVECTOR_KOKKOS X X
NVECTOR_OPENMPDEV X X2

X XX

KR X R

KR X R

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! x! x!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFQOMR X! X! X! x! x!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON x! X! x! X! X!
SUNNONLINSOL_FIXEDPOINT X! x! x! x! x!

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

4.6. Features for GPU Accelerated Computing

81

User Documentation for ARKODE, v5.7.0

3.

Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.6.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

82

Chapter 4. Using SUNDIALS

Chapter 5

Using ARKODE

This chapter discusses usage for ARKODE from C, C++ and Fortran applications. The chapter builds upon §4. We
first discuss commonalities to each of ARKODE'’s time-stepping modules, including locations and naming conventions
for the library and header files, and discussion of data types in SUNDIALS. We then separately discuss the C and C++
interfaces to each of ARKODE'’s time stepping modules: ARKStep, ERKStep, SPRKStep and MRIStep. Following
these, we describe the set of user-supplied routines (both required and optional) that can be supplied to ARKODE.

5.1 Access to library and header files

At this point, it is assumed that the installation of ARKODE, following the procedure described in §14, has been
completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKODE. The relevant library files
are

e libdir/libsundials_arkode.lib,
e libdir/libsundials_nvec*.1ib,

where the file extension .1ib is typically .so for shared libraries and .a for static libraries. The relevant header files
are located in the subdirectories

e incdir/include/arkode

e incdir/include/sundials

e incdir/include/nvector

e incdir/include/sunmatrix

e incdir/include/sunlinsol

e incdir/include/sunnonlinsol

The directories 1ibdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/1lib and instdir/include, respectively, where instdir is the directory where SUN-
DIALS was installed (see §14 for further details).

When using ARKODE, the calling program must include several header files so that various macros and data types can
be used. One of the following header files is always required:

* arkode/arkode_arkstep.h, the main header file for the ARKStep time-stepping module.

83

User Documentation for ARKODE, v5.7.0

* arkode/arkode_erkstep.h, the main header file for the ERKStep time-stepping module.
* arkode/arkode_mristep.h, the main header file for the MRIStep time-stepping module.

Each of these define several types and various constants, include function prototypes, and include the shared arkode/
arkode.h and arkode/arkode_1s.h header files.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not need to include sundials_-
types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form nvector/
nvector_*** h, corresponding to the user’s preferred data layout and form of parallelism. See §8 for details for the
appropriate name. This file in turn includes the header file sundials_nvector.h which defines the abstract N_Vector
data type.

If the user wishes to manually select between any of the pre-defined ERK or DIRK Butcher tables (for ARKStep,
ERKStep, or as the basis for an MIS method), these are defined through a set of constants that are enumerated in the
header files arkode/arkode_butcher_erk.h and arkode/arkode_butcher_dirk.h, or if a user wishes to man-
ually specify one or more Butcher tables, the corresponding ARKodeButcherTable structure is defined in arkode/
arkode_butcher.h. Alternatively, for MRIStep, slow-to-fast coupling coeflicient tables are enumerated in the header
file arkode/arkode_mristp.h, or if a user wishes to manually specify a coupling table, the corresponding MRIS-
tepCouplingMem structure is defined in arkode/arkode_mristep.h.

If the user includes a non-trivial implicit component to their ODE system in ARKStep, or if the slow time scale for
MRIStep should be treated implicitly, then each implicit stage will require a nonlinear solver for the resulting sys-
tem of algebraic equations — the default for this is a modified or inexact Newton iteration, depending on the user’s
choice of linear solver. If using a non-default nonlinear solver module, or when interacting with a SUNNONLINSOL
module directly, the calling program must also include a SUNNONLINSOL header file, of the form sunnonlinsol/
sunnonlinsol_***.h where *** is the name of the nonlinear solver module (see §11 for more information). This file
in turn includes the header file sundials_nonlinearsolver.h which defines the abstract SUNNonlinearSolver

data type.

If using a nonlinear solver that requires the solution of a linear system of the form Ax = b (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system in ARKStep
involves a non-identity mass matrix M = I, then each time step will require a linear solver for systems of the form
Mz = b. The header files corresponding to the SUNDIALS-provided linear solver modules available for use with
ARKODE are:

¢ Direct linear solvers:

sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLINSOL _-
DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLINSOL_-
BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver module,
SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver module,
SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUNLINSOL,_-
KLU;

— sunlinsol/sunlinsol_superlumt.h, whichis used with the SuperLU_MT sparse linear solver module,
SUNLINSOL_SUPERLUMT;

— sunlinsol/sunlinsol_superludist.h, which is used with the SuperLU_DIST parallel sparse linear
solver module, SUNLINSOL_SUPERLUDIST;

84 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

— sunlinsol/sunlinsol_cusolversp_batchqr.h, which is used with the batched sparse QR factoriza-
tion method provided by the NVDIA cuSOLVER library, SUNLINSOL_CUSOLVERSP_BATCHQR;

e [terative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear
solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES Krylov lin-
ear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov
linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov lin-
ear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear solver
module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include the
file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well as various
functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include the
file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as various
functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KILU and SUNLINSOL_SUPERLUMT linear solver modules include the file
sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as various
functions and macros for acting on such matrices.

The header file for the SUNLINSOL_CUSOLVERSP_BATCHQR linear solver module includes the file sunmatrix/
sunmatrix_cusparse.h, which defines the SUNMATRIX_CUSPARSE matrix module, as well as various functions
for acting on such matrices.

The header file for the SUNLINSOL_SUPERLUDIST linear solver module includes the file sunmatrix/
sunmatrix_slunrloc.h, which defines the SUNMATRIX_SLUNRLOC matrix module, as well as various functions
for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which enumer-
ates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt orthogo-
nalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h is
needed to access the preconditioner initialization routines.

5.1.1 Data Types

The header file sundials_types.h contains the definition of the types:
» realtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices
* booleantype — the type used for logic operations within SUNDIALS
e SUNOutputFormat — an enumerated type for SUNDIALS output formats

5.1. Access to library and header files 85

User Documentation for ARKODE, v5.7.0

5.1.1.1 Floating point types

type realtype

The type realtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest value repre-
sentable as a realtype, SMALL_REAL to be the smallest value representable as a realtype, and UNIT_ROUNDOFF to
be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that needs the ability
to branch on the definition of realtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to 1.0F
if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro internally to
declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double, fabsf when
realtype is float, and fabsl when realtype is long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros is
precision-independent except for any calls to precision-specific library functions. Our example programs use real-
type, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double in their code
(assuming that this usage is consistent with the typedef for realtype) and call the appropriate math library functions
directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying the code to use
realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use the corresponding precision
(see §14.1.2).

5.1.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23* — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §14.1.2).

86 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

5.1.1.3 Boolean type

type booleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type booleantype
as an int.

The advantage of using the name booleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type booleantype are intended to have
only the two values SUNFALSE (0) and SUNTRUE (1).

5.1.1.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

5.2 Using the ARKStep time-stepping module

This chapter is concerned with the use of the ARKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the user’s main
program, and provide descriptions of the ARKStep user-callable functions and user-supplied functions.

The example programs located in the source code examples/arkode folder, including those described in the compan-
ion document [71], may be helpful as templates for new codes.

Users with applications written in Fortran should see the chapter §4.5, which describes the Fortran/C interface module
for ARKStep, and may look to the Fortran example programs also provided in the ARKODE examples directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX, and preconditioning modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each SUNMATRIX (see
§9) and each SUNLINSOL module (see §10). For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMATRIX types, or with the corresponding dense, banded, or sparse SUNLINSOL modules.
Please check §9 and §10 to verify compatibility between these modules. In addition to that documentation, we note
that the ARKBANDPRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_-
OPENMP or NVECTOR_PTHREADS vector implementations, and the preconditioner module ARKBBDPRE can
only be used with NVECTOR_PARALLEL.

ARKStep uses various input and output constants from the shared ARKODE infrastructure. These are defined as needed
in this chapter, but for convenience the full list is provided separately in §15.

The relevant information on using ARKStep’s C and C++ interfaces is detailed in the following subsections.

5.2. Using the ARKStep time-stepping module 87

User Documentation for ARKODE, v5.7.0

5.2.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ARKStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUN-
NONLINSOL implementations used. For the steps that are not, refer to §8, §9, §10, and §11 for the specific name of
the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

. Create the SUNDIALS simulation context object.

Call SUNContext_Create() to allocate the SUNContext object.

. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

. Set vector of initial values

To set the vector y® of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y® = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector by
making a call of the form

yO = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.

. Create ARKStep object

Call arkode_mem = ARKStepCreate(...) tocreate the ARKStep memory block. ARKStepCreate () returns
a void* pointer to this memory structure. See §5.2.2.1 for details.

. Specify integration tolerances

Call ARKStepSStolerances() or ARKStepSVtolerances() to specify either a scalar relative tolerance and
scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. Alter-
natively, call ARKStepliFtolerances() to specify a function which sets directly the weights used in evaluating
WRMS vector norms. See §5.2.2.2 for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from the equation
units, absolute tolerances for the equation residuals (nonlinear and linear) may be specified separately through
calls to ARKStepResStolerance(), ARKStepResVtolerance(), or ARKStepResFtolerance().

88

Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will be
a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(..., sunctx);

or similar for the other matrix modules (see §9 for further information).

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be solved
using a direct linear solver, then a template mass matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

8. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §10.
9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in §10 for details.

10. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see §5.2.2.3):

ier = ARKStepSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for details
see §5.2.2.3):

ier = ARKStepSetMassLinearSolver(...);

11. Create nonlinear solver object

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for im-
plicit stage solves (see §5.2.2.5), then the desired nonlinear solver object must be created by using the appropriate
functions defined by the particular SUNNONLINSOL implementation (e.g., NLS = SUNNonlinSol_***(...
) ; where *** is the name of the nonlinear solver (see §11 for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in §11.

5.2. Using the ARKStep time-stepping module 89

User Documentation for ARKODE, v5.7.0

12. Attach nonlinear solver module
If a nonlinear solver object was created above, then it must be attached to ARKStep using the call (for details see
§5.2.2.5):
ier = ARKStepSetNonlinearSolver(...);

13. Set nonlinear solver optional inputs
Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to ARKStep, otherwise the
optional inputs will be overridden by ARKStep defaults. See §11 for more information on optional inputs.

14. Set optional inputs
Call ARKStepSet* functions to change any optional inputs that control the behavior of ARKStep from their
default values. See §5.2.2.8 for details.

15. Specify rootfinding problem
Optionally, call ARKStepRootInit () to initialize a rootfinding problem to be solved during the integration of
the ODE system. See §5.2.2.6 for general details, and §5.2.2.8 for relevant optional input calls.

16. Advance solution in time
For each point at which output is desired, call
ier = ARKStepEvolve(arkode_mem, tout, yout, &tret, itask);
Here, itask specifies the return mode. The vector yout (which can be the same as the vector y® above) will
contain y(teu). See §5.2.2.7 for details.

17. Get optional outputs
Call ARKStepGet* functions to obtain optional output. See §5.2.2.10 for details.

18. Deallocate memory for solution vector
Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:
N_VDestroy(y);

19. Free solver memory
Call ARKStepFree () to free the memory allocated for the ARKStep module (and any nonlinear solver module).

20. Free linear solver and matrix memory
Call SUNLinSolFree() and (possibly) SUNMatDestroy () to free any memory allocated for the linear solver
and matrix objects created above.

21. Free nonlinear solver memory
If a user-supplied SUNNonlinearSolver was provided to ARKStep, then call SUNNonlinSolFree() to free
any memory allocated for the nonlinear solver object created above.

22. Finalize MPI, if used
Call MPI_Finalize to terminate MPL.

90 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

5.2.2 ARKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ARKStep time-
stepping module. Some of these are required; however, starting with §5.2.2.8, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKODE’s ARKStep module.
In any case, refer to the preceding section, §5.2.1, for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide their own error handler function (see §5.2.2.8 for details).

5.2.2.1 ARKStep initialization and deallocation functions

void *ARKStepCreate (ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0, SUNContext sunctx)

This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKODE.

Arguments:

¢ fe — the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in M (¢) v/ (t) = fE(t,y) + fL(t,y).

* fi — the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M () y/(t) = fE(t,y) + fL(t,y).

¢ 10 — the initial value of ¢.
* y0 — the initial condition vector y(¢o).
* sunctx —the SUNContext object (see §4.1)

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ARKStepFree (void **arkode_mem)

This function frees the problem memory arkode_mem created by ARKStepCreate().
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

Return value: None

5.2.2.2 ARKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ARKSte-
pEvolve(); otherwise default values of reltol = le-4 and abstol = 1le-9 will be used, which may be entirely
incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of ARKStepSStol-
erances (), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKStepSVtolerances () the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

5.2. Using the ARKStep time-stepping module 91

User Documentation for ARKODE, v5.7.0

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

| X 1/2
_ . 2
[vllwrams = (N > (v; ewt;)) ;

i=1
where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to ARKStepliFtoler-
ances().

int ARKStepSStolerances (void *arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepSVtolerances (void *arkode_mem, realtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepWFtolerances (void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* efun — the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:

e ARK SUCCESS if successful

92 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Moreover, for problems involving a non-identity mass matrix M # I, the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKStep defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKStepResStolerance(), this vector has
components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKStepResVtolerance () the vector components are given by

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

o 1/2
— . . 2
lllwrms = (N ;(vl rwt;)) ,

where N is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKStepResFtolerance (). Further information on all three of these functions is provided below.

int ARKStepResStolerance (void *arkode_mem, realtype rabstol)

This function specifies a scalar absolute residual tolerance.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rabstol — scalar absolute residual tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResVtolerance (void *arkode_mem, N_Vector rabstol)

This function specifies a vector of absolute residual tolerances.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rabstol — vector containing the absolute residual tolerances for each solution component.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

5.2. Using the ARKStep time-stepping module 93

User Documentation for ARKODE, v5.7.0

e ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResFtolerance(void *arkode_mem, ARKRwiFn rfun)

This function specifies a user-supplied function rfun to compute the residual weight vector rwt.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rfun — the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern. The
following pieces of advice are relevant.

(D

2

3)

“4)

The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~2. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
1015 for double-precision).

The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no sense
(and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs
to be set to that noise level. If the different components have different noise levels, then abstol should be a vector.
For example, see the example problem ark_robertson.c, and the discussion of it in the ARKODE Examples
Documentation [71]. In that problem, the three components vary between O and 1, and have different noise
levels; hence the atols vector therein. It is impossible to give any general advice on abstol values, because
the appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as
to what those noise levels are.

The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for abstol,
except that these should be set to the noise level of the equation components, i.e. the noise level of My. For
problems in which M = I, it is recommended that rabstol be left unset, which will default to the already-
supplied abstol values.

Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that accu-
mulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10 from
the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice for reltol is
10~°. In any case, it is a good idea to do a few experiments with the tolerances to see how the computed solution
values vary as tolerances are reduced.

94

Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

(1) The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKStep, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

(3) The user’s right-hand side routines f¥ and f! should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the f¥ or f/
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing f(¢,y) or f1(¢,v).

(4) ARKStep supports component-wise constraints on solution components, y; < 0, y; < 0, ,y; > 0, or y; > 0,
through the user-callable function ARKStepSetConstraints(). At each internal time step, if any constraint
is violated then ARKStep will attempt a smaller time step that should not violate this constraint. This reduced
step size is chosen such that the step size is the largest possible but where the solution component satisfies the
constraint.

(5) Positivity and non-negativity constraints on components can also be enforced by use of the recoverable error
return feature in the user-supplied right-hand side functions, ¥ and f!. When a recoverable error is encountered,
ARKStep will retry the step with a smaller step size, which typically alleviates the problem. However, since this
reduced step size is chosen without knowledge of the solution constraint, it may be overly conservative. Thus
this option involves some additional overhead cost, and should only be exercised if the above recommendations
are unsuccessful.

5.2.2.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKStep require the solution
of linear systems of the form

A (me)) sm D) — _a (21(7”))

where

I
A~ M —~J, Jzai.
dy

ARKODE’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix .J, the
Newton matrix 4, the mass matrix M, and, when using direct solvers, the factorizations used throughout the solution
process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations, and
only require the action of the matrix on a vector, Av. With most of these methods, preconditioning can be done on
the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR

5.2. Using the ARKStep time-stepping module 95

User Documentation for ARKODE, v5.7.0

that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver portions of §5.2.2.8 and §5.6.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P, (either of which could be the identity matrix), such that the product P; P, approximates the Newton matrix
A=M —~J.

To specify a generic linear solver for ARKStep to use for the Newton systems, after the call to ARKStepCreate () but
before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver object and
call the function ARKStepSetLinearSolver(), as documented below. To create the SUNLinearSolver object, the
user may call one of the SUNDIALS-packaged SUNLinSol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of SUNDIALS-packaged SUNLinSol modules, and their constructor routines, may be found in chapter
§10. Alternately, a user-supplied SUNLinearSolver module may be created and used. Specific information on how
to create such user-provided modules may be found in §10.1.8.

Once this solver object has been constructed, the user should attach it to ARKStep via a call to ARKStepSetLinear-
Solver(). The first argument passed to this function is the ARKStep memory pointer returned by ARKStepCreate();
the second argument is the SUNLinearSolver object created above. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the ARKLS linear solver interface, linking it to the ARKStep integrator,
and allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int ARKStepSetLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)

This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* LS — the SUNLinearSolver object to use.

¢ J — the template Jacobian SUNMatrix object to use (or NULL if not applicable).
Return value:

* ARKLS_SUCCESS if successful

e ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MEM_FAIL if there was a memory allocation failure

e ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

Notes:
If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMATRIX type in the §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = M —~.J, even if J itself has zeros in nonzero locations
of M. The reasoning for this is that A is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store .4 then it will need to be resized internally by ARKStep.

96 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

5.2.2.4 Mass matrix solver specification functions

As discussed in §2.11.6, if the ODE system involves a non-identity mass matrix M # I, then ARKStep must solve
linear systems of the form

Mz =b.

ARKODE’s ARKLS mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this task.
For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a preconditioner, see
the iterative linear solver portions of §5.2.2.8 and §5.6. If preconditioning is to be performed, user-supplied functions
should be used to define left and right preconditioner matrices P; and P (either of which could be the identity matrix),
such that the product P; P, approximates the mass matrix M.

To specify a generic linear solver for ARKStep to use for mass matrix systems, after the call to ARKStepCreate ()
but before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver object
and call the function ARKStepSetMassLinearSolver(), as documented below. The first argument passed to this
function is the ARKStep memory pointer returned by ARKStepCreate(); the second argument is the desired SUN-
LinearSolver object to use for solving mass matrix systems. The third object is a template SUNMatrix to use with
the provided SUNLinearSolver (if applicable). The fourth input is a flag to indicate whether the mass matrix is time-
dependent, i.e. M = M(t), or not. A call to this function initializes the ARKLS mass matrix linear solver interface,
linking this to the main ARKStep integrator, and allows the user to specify additional parameters and routines pertinent
to their choice of linear solver.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

¢ Ifboth are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when forming
the Newton system matrix .A. In this case, both the Newton and mass matrix linear solver interfaces can use the
same SUNLinearSolver object, although different solver objects (e.g. with different solver parameters) are also
allowed.

* If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

int ARKStepSetMassLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix M, booleantype
time_dep)

This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as well
as a template SUNMatrix object.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e LS — the SUNLinearSolver object to use.
* M — the template mass SUNMatrix object to use.

* time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
or not (M # M (t)). SUNTRUE indicates time-dependence of the mass matrix.

Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_MEM_FAIL if there was a memory allocation failure

* ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the current
N_Vector module.

5.2. Using the ARKStep time-stepping module 97

User Documentation for ARKODE, v5.7.0

Notes:
If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either ARKStepReInit () or ARKStepResize() are called), with the results reused throughout the entire
ARKStep simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any
functions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-
matrix constructor routine (see ARKLsMassFn and ARKStepSetMassFn()).

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-
times-vector product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes()).

5.2.2.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKStep, after the call to ARKStepCreate () but before any calls to ARKSte-
pEvolve (), the user’s program must create the appropriate SUNNonlinearSolver object and call ARKStepSetNon-
linearSolver(), as documented below. If any calls to ARKStepEvolve () have been made, then ARKStep will need
to be reinitialized by calling ARKStepReInit () to ensure that the nonlinear solver is initialized correctly before any
subsequent calls to ARKStepEvolve().

The first argument passed to the routine ARKStepSetNonlinearSolver () is the ARKStep memory pointer returned
by ARKStepCreate(); the second argument passed to this function is the desired SUNNonlinearSolver object to
use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to the
main ARKStep integrator.

int ARKStepSetNonlinearSolver (void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e NLS —the SUNNonlinearSolver object to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes:
ARKStep will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces
that module with the supplied NLS object.

98 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

5.2.2.6 Rootfinding initialization function

As described in §2.12, while solving the IVP, ARKODE’s time-stepping modules have the capability to find the roots
of a set of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally
called only once, prior to the first call to ARKStepEvolve (), but if the rootfinding problem is to be changed during the
solution, ARKStepRootInit () can also be called prior to a continuation call to ARKStepEvolve().

int ARKStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate (), and before ARKStepEvolve().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nrifn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots are
sought.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
e ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes:

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit (), where the new IVP has no rootfind-
ing problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.

5.2.2.7 ARKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where ARKStep is to return a solution. These modes are modified if the user has set
a stop time (with a call to the optional input function ARKStepSetStopTime ()) or has requested rootfinding.

int ARKStepEvolve (void *arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in £.

Arguments:
¢ arkode_mem — pointer to the ARKStep memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
* tret — the time corresponding to yout (output).
* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < fout < t,, for forward integration,
ort, < tout < t,_; for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (as described in §2.2).

5.2. Using the ARKStep time-stepping module 99

User Documentation for ARKODE, v5.7.0

The ARK_ONE_STEP option tells the solver to only take a single internal step, y,,—1 — Y, and return
the solution at that point, y,,, in the vector yout.

Return value:

e ARK _SUCCESS if successful.

e ARK_ROOT_RETURN if ARKStepEvolve () succeeded, and found one or more roots. If the number
of root functions, nrifn, is greater than 1, call ARKStepGetRootInfo() to see which g; were found to
have a root at (*tret).

¢ ARK_TSTOP_RETURN if ARKStepEvolve () succeeded and returned at zstop.
* ARK_MEM_NULL if the arkode_mem argument was NULL.
e ARK_NO_MALLOC if arkode_mem was not allocated.

* ARK_ILL_INPUT if one of the inputs to ARKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling ARKStepCreate()) failed
to set the linear solver-specific Isolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point ¢ and also very near ¢.
(d) The initial condition violates the inequality constraints.

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach fout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

* ARK_ERR_FAILURE fif error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = Ay

* ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf’) dur-
ing one internal time step or occurred with |h| = hypin.

e ARK LINIT_FAIL if the linear solver’s initialization function failed.
e ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.
e ARK LSOLVE_ FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

e ARK_MASSINIT _FAIL if the mass matrix solver’s initialization function failed.

ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

ARK_VECTOROP_ERR a vector operation error occurred.

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate().

In ARK_ONE_STEP mode, fout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKStepEvolve () failures.

100

Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKStepSetStopTime () before the call to ARKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for zstop is disabled (and can be re-enabled only though a new call to ARKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ARKStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

5.2.2.8 Optional input functions

There are numerous optional input parameters that control the behavior of ARKStep, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of ARKStep they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:
* General ARKStep options (Optional inputs for ARKStep),
* IVP method solver options (Optional inputs for IVP method selection),
* Step adaptivity solver options (Optional inputs for time step adaptivity),
* Implicit stage solver options (Optional inputs for implicit stage solves),
* Linear solver interface options (Linear solver interface optional input functions), and
* Rootfinding options (Rootfinding optional input functions).

For the most casual use of ARKStep, relying on the default set of solver parameters, the reader can skip to section on
user-supplied functions, §5.6.

‘We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
call to an ARKStepSet*** function can generally be made from the user’s calling program at any time and, if successful,
takes effect immediately. ARKStepSet*** functions that cannot be called at any time note this in the “Notes:” section
of the function documentation.

5.2. Using the ARKStep time-stepping module 101

User Documentation for ARKODE, v5.7.0

Optional inputs for ARKStep

Optional input

Function name

Default

Return ARKStep parameters to their defaults
Set dense output interpolation type

Set dense output polynomial degree

Supply a pointer to a diagnostics output file
Supply a pointer to an error output file
Supply a custom error handler function
Disable time step adaptivity (fixed-step mode)
Supply an initial step size to attempt
Maximum no. of warnings for ¢,, + h = t,,
Maximum no. of internal steps before fout
Maximum absolute step size

Minimum absolute step size

Set a value for ¢4,

Interpolate at ¢4,

Disable the stop time

Supply a pointer for user data

Maximum no. of ARKStep error test failures
Set ‘optimal’ adaptivity params. for a method
Set inequality constraints on solution

Set max number of constraint failures

ARKStepSetDefaults()
ARKStepSetInterpolantType()

ARKStepSetInterpolantDegree ()
ARKStepSetDiagnostics()
ARKStepSetErrFile()
ARKStepSetErrHandlerFn()
ARKStepSetFixedStep()
ARKStepSetInitStep()
ARKStepSetMaxHnilWarns ()
ARKStepSetMaxNumSteps ()
ARKStepSetMaxStep ()
ARKStepSetMinStep ()
ARKStepSetStopTime ()
ARKStepSetInterpolateStop-
Time()

ARKStepClearStopTime ()
ARKStepSetUserData()
ARKStepSetMaxErrTestFails()
ARKStepSetOptimalParams ()
ARKStepSetConstraints()
ARKStepSetMaxNumConstrFails()

internal
ARK_INTERP_HER-
MITE

5

NULL
stderr
internal fn
disabled
estimated
10

500

00

0.0
undefined
SUNFALSE

N/A
NULL

7
internal
NULL
10

int ARKStepSetDefaults (void *arkode_mem)

Resets all optional input parameters to ARKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:

Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using ARKStep-

RootInit()).

int ARKStepSetInterpolantType (void *arkode_mem, int itype)

Specifies use of the Lagrange or Hermite interpolation modules (used for dense output — interpolation of solution

output values and implicit method predictors).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* itype — requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)

102

Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_MEM_FAIL if the interpolation module cannot be allocated
* ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already been
initialized
Notes:

The Hermite interpolation module is described in §2.2.1, and the Lagrange interpolation module is de-
scribed in §2.2.2.

This routine frees any previously-allocated interpolation module, and re-creates one according to the spec-
ified argument. Thus any previous calls to ARKStepSetInterpolantDegree () will be nullified.

This routine may only be called after the call to ARKStepCreate (). After the first call to ARKStepE-
volve () the interpolation type may not be changed without first calling ARKStepReInit().

If this routine is not called, the Hermite interpolation module will be used.

int ARKStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* degree — requested polynomial degree.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory or interpolation module are NULL
e ARK_INTERP_FAIL if this is called after ARKStepEvolve()
* ARK_ILL INPUT if an argument has an illegal value or the interpolation module has already been
initialized
Notes:
Allowed values are between 0 and 5.

This routine should be called after ARKStepCreate () and before ARKStepEvolve (). After the first call to
ARKStepEvolve () the interpolation degree may not be changed without first calling ARKStepReInit ().

If a user calls both this routine and ARKStepSetInterpolantType(), then ARKStepSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKStep will be the minimum of ¢ — 1 and
the input degree, for ¢ > 1 where g is the order of accuracy for the time integration method.

Changed in version 5.5.1: When ¢ = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.
int ARKStepSetDenseOrder (void *arkode_mem, int dord)

This function is deprecated, and will be removed in a future release. Users should transition to calling ARK-
StepSetInterpolantDegree () instead.

5.2. Using the ARKStep time-stepping module 103

User Documentation for ARKODE, v5.7.0

int ARKStepSetDiagnostics(void *arkode_mem, FILE *diagfp)

Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is written.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* diagfp — pointer to the diagnostics output file.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename () instead.

int ARKStepSetErrFile(void *arkode_mem, FILE *errfp)

Specifies a pointer to the file where all ARKStep warning and error messages will be written if the default internal
error handling function is used.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* errfp — pointer to the output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKStep
memory pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for
subsequent error messages.

int ARKStepSetErrHandlerFn(void *arkode_mem, ARKErrHandlerFn ehfun, void *eh_data)

Specifies the optional user-defined function to be used in handling error messages.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ehfun — name of user-supplied error handler function.

* eh_data — pointer to user data passed to ehfun every time it is called.

Return value:

104 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Error messages indicating that the ARKStep solver memory is NULL will always be directed to stderr.

int ARKStepSetFixedStep (void *arkode_mem, realtype hfixed)

Disables time step adaptivity within ARKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since it gives no assurance of the validity of the com-
puted solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKStepSetFixedStep(), any values provided to the functions ARKStepSetInit-
Step(), ARKStepSetAdaptivityFn(), ARKStepSetMaxErrTestFails(), ARKStepSetAdaptiv-
ityMethod(), ARKStepSetCFLFraction(), ARKStepSetErrorBias(), ARKStepSetFixedStep-
Bounds (), ARKStepSetMaxCFailGrowth(), ARKStepSetMaxEFailGrowth(), ARKStepSetMax-
FirstGrowth(), ARKStepSetMaxGrowth(), ARKStepSetMinReduction(), ARKStepSetSafetyFac-
tor(), ARKStepSetSmallNumEFails(), ARKStepSetStabilityFn(), and ARKStepSetAdaptCon-
troller() will be ignored, since temporal adaptivity is disabled.

If both ARKStepSetFixedStep () and ARKStepSetStopTime () are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep () must be made prior to calling
ARKStepEvolve () to resume integration.

It is not recommended that ARKStepSetFixedStep () be used in concert with ARKStepSetMaxStep ()
or ARKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ARKStepSetInitStep (void *arkode_mem, realtype hin)

Specifies the initial time step size ARKStep should use after initialization, re-initialization, or resetting.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hin — value of the initial step to be attempted (# 0).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

5.2. Using the ARKStep time-stepping module 105

User Documentation for ARKODE, v5.7.0

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass 0.0 to use the default value.
2
By default, ARKStep estimates the initial step size to be h = ﬂ, where is estimate of the second
Y

derivative of the solution at ¢g.
This routine will also reset the step size and error history.

int ARKStepSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢ + h = ¢ on the next internal step,
before ARKStep will instead return with an error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

o mxhnil — maximum allowed number of warning messages (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ARKStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ARKStepSetMaxStep (void *arkode_mem, realtype hmax)

Specifies the upper bound on the magnitude of the time step size.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmax — maximum absolute value of the time step size (> 0).

Return value:

106 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass himax < 0.0 to set the default value of co.

int ARKStepSetMinStep (void *arkode_mem, realtype hmin)

Specifies the lower bound on the magnitude of the time step size.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
Pass hmin < 0.0 to set the default value of 0.

int ARKStepSetStopTime (void *arkode_mem, realtype tstop)

Specifies the value of the independent variable ¢ past which the solution is not to proceed.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* tstop — stopping time for the integrator.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be reenabled
only though a new call to ARKStepSetStopTime()).

A stop time not reached before a call to ARKStepReInit () or ARKStepReset () will remain active but
can be disabled by calling ARKStepClearStopTime().

int ARKStepSetInterpolateStopTime (void *arkode_mem, booleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* interp — flag indicating to use interpolation (1) or copy (0).
Return value:

e ARK SUCCESS if successful

5.2. Using the ARKStep time-stepping module 107

User Documentation for ARKODE, v5.7.0

* ARK_MEM_NULL if the ARKStep memory is NULL
New in version 5.6.0.

int ARKStepClearStopTime (void *arkode_mem)
Disables the stop time set with ARKStepSetStopTime ().

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
The stop time can be reenabled though a new call to ARKStepSetStopTime().

New in version 5.5.1.

int ARKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* user_data — pointer to the user data.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:

If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before any
calls to ARKStepSetLinearSolver () and/or ARKStepSetMassLinearSolver().

int ARKStepSetMaxErrTestFails (void *arkode_mem, int maxnef)

Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes:
The default value is 7; set maxnef < 0 to specify this default.

108 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

int ARKStepSetOptimalParams (void *arkode_mem)

Sets all adaptivity and solver parameters to our “best guess” values for a given integration method type (ERK,
DIRK, ARK) and a given method order.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
Should only be called after the method order and integration method have been set. The “optimal” val-
ues resulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all
problems are different, so these values may not be optimal for all users.

int ARKStepSetConstraints(void *arkode_mem, N_Vector constraints)

Specifies a vector defining inequality constraints for each component of the solution vector y.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* constraints — vector of constraint flags. Each component specifies the type of solution constraint:

0.0 = no constraint is imposed on y;,
1.0 = y =0,
constraints[i] = -1.0 = y; <0,
20 = y; >0,
—-20 = y; <0.

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ARKStepResize() inequality constraint checking will be disabled and a call to ARK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ARKStepSetConstraints() and ARKStepSet-
FixedStep () are incompatible, and should not be used simultaneously.

int ARKStepSetMaxNumConstrFails (void *arkode_mem, int maxfails)

Specifies the maximum number of constraint failures in a step before ARKStep will return with an error.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

5.2. Using the ARKStep time-stepping module 109

User Documentation for ARKODE, v5.7.0

* maxfails — maximum allowed number of constrain failures.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
Passing maxfails <= 0 results in ARKStep using the default value (10).

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder () 4

Specify implicit/explicit problem ARKStepSetImEx() SUNTRUE
Specify explicit problem ARKStepSetExplicit() SUNFALSE
Specify implicit problem ARKStepSetImplicit() SUNFALSE
Set additive RK tables ARKStepSetTables() internal
Set additive RK tables via their numbers ARKStepSetTableNum() internal
Set additive RK tables via their names ARKStepSetTableName() internal

int ARKStepSetOrder (void *arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ord —requested order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes:

For explicit methods, the allowed values are 2 < ord < 8. For implicit methods, the allowed values are
2 < ord < 5, and for ImEx methods the allowed values are 2 < ord < 5. Any illegal input will result in

the default value of 4.

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed
after the first call to ARKStepEvolve (), unless ARKStepReInit () is called.

int ARKStepSetImEx (void *arkode_mem)

Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge—Kutta

method.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

110 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is automatically deduced when neither of the function pointers fe or fi passed to ARKStepCreate ()
are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit(void *arkode_mem)

Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is automatically deduced when the function pointer fi passed to ARKStepCreate () is NULL, but may
be set directly by the user if desired.

If the problem is posed in explicit form, i.e. § = f(¢, y), then we recommend that the ERKStep time-stepper
module be used instead.

int ARKStepSetImplicit(void *arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This is automatically deduced when the function pointer fe passed to ARKStepCreate () is NULL, but may
be set directly by the user if desired.

int ARKStepSetTables (void *arkode_mem, int q, int p, ARKodeButcherTable Bi, ARKodeButcherTable Be)
Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
¢ g — global order of accuracy for the ARK method.
* p — global order of accuracy for the embedded ARK method.
* Bi — the Butcher table for the implicit RK method.
* Be — the Butcher table for the explicit RK method.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL

5.2. Using the ARKStep time-stepping module 111

User Documentation for ARKODE, v5.7.0

* ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables, see
§6.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit (). However, if
the problem is posed in explicit form, i.e. § = f(¢,y), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSetImplicit().
If both Bi and Be are provided, this routine automatically calls ARKStepSetImEx ().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of ¢ and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If
both Bi and Be are non-NULL (e.g, an ImEx method is provided) then the input values of g and p are used
as the order of the ARK method may be less than the orders of the individual tables. No error checking is
performed to ensure that either p or ¢ correctly describe the coefficients that were input.

Error checking is subsequently performed at ARKStep initialization to ensure that Bi and Be (if non-NULL)
specify DIRK and ERK methods, respectively. Specifically, the A member of Bi must be lower triangular
with at least one nonzero value on the diagonal, and the A member of Be must be strictly lower triangular.
When both Bi and Be are non-NULL, they must agree on the number of internal stages, i.e., the stages
members of both structures must match.

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is
non-NULL), the user must call ARKStepSetFixedStep() to enable fixed-step mode and set the desired
time step size.

int ARKStepSetTableNum(void *arkode_mem, ARKODE_DIRKTuablelD itable, ARKODE_ERKTuablelD etable)

Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
¢ jtable — index of the DIRK Butcher table.
e etable — index of the ERK Butcher table.

Return value:

e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:

The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §16.

To choose an explicit table, set itable to a negative value. This automatically calls ARKStepSetEx-
plicit(). However, if the problem is posed in explicit form, i.e. § = f(¢,y), then we recommend
that the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed
in §16.3. This automatically calls ARKStepSetImEx ().

In all cases, error-checking is performed to ensure that the tables exist.

112

Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

int ARKStepSetTableName (void *arkode_mem, const char *itable, const char *etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* itable — name of the DIRK Butcher table.
* etable — name of the ERK Butcher table.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes:
The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §16. This function is case sensitive.

To choose an explicit table, set itable to "ARKODE_DIRK_NONE". This automatically calls ARKStepSet-
Explicit(). However, if the problem is posed in explicit form, i.e. ¥ = f(¢,y), then we recommend that
the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to "ARKODE_ERK_NONE". This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are not none, then these should match an existing implicit/explicit pair, listed in
§16.3. This automatically calls ARKStepSetImEx ().

In all cases, error-checking is performed to ensure that the tables exist.

Optional inputs for time step adaptivity

The mathematical explanation of ARKODE'’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.8.

Optional input Function name Default
Provide a SUNAdaptController for ARKStep to use ARKStepSetAdaptController() PID

Set a custom time step adaptivity function ARKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ARKStepSetAdaptivityMethod() 0
Adjust the method order used in the controller ERKStepSetAdaptivityAdjustment() -1
Explicit stability safety factor ARKStepSetCFLFraction() 0.5
Time step error bias factor ARKStepSetErrorBias() 1.5
Bounds determining no change in step size ARKStepSetFixedStepBounds () 1.0 1.5
Maximum step growth factor on convergence fail ARKStepSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKStepSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ARKStepSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ARKStepSetMinReduction() 0.1
Time step safety factor ARKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ARKStepSetSmallNumEFails () 2
Explicit stability function ARKStepSetStabilityFn() none

5.2. Using the ARKStep time-stepping module 113

User Documentation for ARKODE, v5.7.0

int ARKStepSetAdaptController (void *arkode_mem, SUNAdaptController C)

Sets a user-supplied time-step controller object.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

e C — user-supplied time adaptivity controller. If NULL then the PID controller will be created (see
§12.2).

Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK MEM _ FAIL if C was NULL and the PID controller could not be allocated.
New in version 5.7.0.

int ARKStepSetAdaptivityFn(void *arkode_mem, ARKAdaptFn hfun, void *h_data)

Sets a user-supplied time-step adaptivity function.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes:
This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ARKStepSetStabilityFn() should be used instead.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetAdaptivityMethod(void *arkode_mem, int imethod, int idefault, int pq, realtype *adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pq —flag denoting whether to use the embedding order of accuracy p (0), the method order of accuracy
q (1), or the minimum of the two (any input not equal to 0 or 1) within the adaptivity algorithm. p is
the default.

* adapt_params[0] — k; parameter within accuracy-based adaptivity algorithms.
* adapt_params|[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params[2] — k3 parameter within accuracy-based adaptivity algorithms.

114 Chapter 5. Using ARKODE

User Documentation for ARKODE, v5.7.0

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ARKStepSetAdaptivityFn().

Changed in version 5.7.0: Prior to version 5.7.0, any nonzero value for pg would result in use of the em-
bedding order of accuracy.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetAdaptivityAdjustment (void *arkode_mem, int adjust)

Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* adjust — adjustment factor (default is -1).
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes:
This should be called prior to calling ARKStepEvolve (), and can only be reset following a call to ARK-
StepReInit().

New in version 5.7.0.

int ARKStepSetCFLFraction(void *arkode_mem, realtype cfl_frac)

Specifies the fraction of the estimated explicitly stable step to use.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* cfl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal v