59 for(
i=strat->
sl;
i>0;
i--)
63 for(
i=strat->
ak;
i>0;
i--)
65 if(used_comp[
i]==
'\0')
123 while ((strat->
Ll>=0) && (degp(strat->
L[strat->
Ll].p,
currRing)-mw < deg))
173 for(
i=strat->
sl;
i>0;
i--)
177 for(
i=strat->
ak;
i>0;
i--)
179 if(used_comp[
i]==
'\0')
193 number lt=pGetcoeff(hilb);
194 n_MPZ(mw,<,Qt->cf);
203 eledeg = (*newhilb)[deg]-(*hilb)[deg];
205 eledeg = (*newhilb)[deg];
210 eledeg = -(*hilb)[deg];
234 while ((strat->
Ll>=0) && (degp(strat->
L[strat->
Ll].p,
currRing)-mw < deg))
267 if(newhilb->
compare(hilb) == 0)
#define BIMATELEM(M, I, J)
int compare(const bigintmat *op) const
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
const CanonicalForm int s
poly hFirstSeries0m(ideal A, ideal Q, intvec *wdegree, intvec *shifts, const ring src, const ring Qt)
bigintmat * hFirstSeries0b(ideal I, ideal Q, intvec *wdegree, intvec *shifts, const ring src, const coeffs biv_cf)
void khCheck(ideal Q, intvec *w, bigintmat *hilb, int &eledeg, int &count, kStrategy strat)
void khCheckLocInhom(ideal Q, intvec *w, bigintmat *hilb, int &count, kStrategy strat)
long kHomModDeg(poly p, const ring r)
long kModDeg(poly p, const ring r)
void deleteInL(LSet set, int *length, int j, kStrategy strat)
static long p_FDeg(const poly p, const ring r)
static long p_Totaldegree(poly p, const ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatibility layer for legacy polynomial operations (over currRing)
#define pGetComp(p)
Component.
void PrintS(const char *s)
long(* pFDegProc)(poly p, ring r)
int status int void size_t count
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
ideal id_Head(ideal h, const ring r)
returns the ideals of initial terms