My Project
Loading...
Searching...
No Matches
FLINTconvert.cc
Go to the documentation of this file.
1/*****************************************************************************\
2 * Computer Algebra System SINGULAR
3\*****************************************************************************/
4/** @file FLINTconvert.cc
5 *
6 * This file implements functions for conversion to FLINT (www.flintlib.org)
7 * and back.
8 *
9 * @author Martin Lee
10 *
11 **/
12/*****************************************************************************/
13
14
15
16#include <config.h>
17
18#include <string.h>
19
20#include "canonicalform.h"
21#include "fac_util.h"
22#include "cf_iter.h"
23#include "cf_factory.h"
24#include "gmpext.h"
25#include "singext.h"
26#include "cf_algorithm.h"
27#include "int_int.h"
28#include "int_rat.h"
29
30#ifdef HAVE_OMALLOC
31#define Alloc(L) omAlloc(L)
32#define Free(A,L) omFreeSize(A,L)
33#else
34#define Alloc(L) malloc(L)
35#define Free(A,L) free(A)
36#endif
37
38#ifdef HAVE_FLINT
39#ifdef HAVE_CSTDIO
40#include <cstdio>
41#else
42#include <stdio.h>
43#endif
44#ifdef __cplusplus
45extern "C"
46{
47#endif
48#ifndef __GMP_BITS_PER_MP_LIMB
49#define __GMP_BITS_PER_MP_LIMB GMP_LIMB_BITS
50#endif
51#include <flint/fmpz.h>
52#include <flint/fmpq.h>
53#include <flint/fmpz_poly.h>
54#include <flint/fmpz_mod_poly.h>
55#include <flint/nmod_poly.h>
56#include <flint/fmpq_poly.h>
57#include <flint/nmod_mat.h>
58#include <flint/fmpz_mat.h>
59#if ( __FLINT_RELEASE >= 20400)
60#include <flint/fq.h>
61#include <flint/fq_poly.h>
62#include <flint/fq_nmod.h>
63#include <flint/fq_nmod_poly.h>
64#include <flint/fq_nmod_mat.h>
65#endif
66#if ( __FLINT_RELEASE >= 20503)
67#include <flint/fmpq_mpoly.h>
68#include <flint/fmpz_mod.h>
69
70// planed, but not yet in FLINT:
71#if (__FLINT_RELEASE < 20700)
72// helper for fq_nmod_t -> nmod_poly_t
73static void fq_nmod_get_nmod_poly(nmod_poly_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)
74{
75 FLINT_ASSERT(b->mod.n == ctx->modulus->mod.n);
76 a->mod = ctx->modulus->mod;
77 nmod_poly_set(a, b);
78}
79#else
80#include <flint/fq_nmod_mpoly.h>
81#endif
82
83#if (__FLINT_RELEASE < 20700)
84// helper for nmod_poly_t -> fq_nmod_t
85void fq_nmod_set_nmod_poly(fq_nmod_t a, const nmod_poly_t b, const fq_nmod_ctx_t ctx)
86{
87 FLINT_ASSERT(a->mod.n == b->mod.n);
88 FLINT_ASSERT(a->mod.n == ctx->modulus->mod.n);
89 nmod_poly_set(a, b);
90 fq_nmod_reduce(a, ctx);
91}
92#elif (__FLINT_RELEASE < 30000)
93void fq_nmod_set_nmod_poly(fq_nmod_t a, const nmod_poly_t b,
94 const fq_nmod_ctx_t ctx)
95{
96 FLINT_ASSERT(a->mod.n == b->mod.n);
97 FLINT_ASSERT(a->mod.n == ctx->modulus->mod.n);
98
99 if (b->length <= 2*(ctx->modulus->length - 1))
100 {
101 nmod_poly_set(a, b);
102 fq_nmod_reduce(a, ctx);
103 }
104 else
105 {
106 nmod_poly_rem(a, b, ctx->modulus);
107 }
108}
109#endif
110
111
112#endif
113#ifdef __cplusplus
114}
115#endif
116
117#include "FLINTconvert.h"
118
119// assumes result to be uninitialiazed
121{
122 if (f.isImm())
123 *result=f.intval();
124 else
125 {
126 fmpz_init(result);
127 InternalInteger *fi=(InternalInteger*)f.getval();
128 fmpz_set_mpz (result, fi->thempi);
129 }
130}
131
132// special version assuming result is already initialized
134{
135 if (f.isImm())
136 fmpz_set_si (result, f.intval());
137 else
138 {
139 InternalInteger *fi=(InternalInteger*)f.getval();
140 mpz_set(_fmpz_promote(result),fi->thempi);
141 _fmpz_demote_val(result);
142 fi->deleteObject();
143 }
144}
145
147{
148 fmpz_poly_init2 (result, degree (f)+1);
149 _fmpz_poly_set_length(result, degree(f)+1);
150 for (CFIterator i= f; i.hasTerms(); i++)
151 convertCF2initFmpz (fmpz_poly_get_coeff_ptr(result, i.exp()), i.coeff()); // assumes initialized
152}
153
154CanonicalForm convertFmpz2CF (const fmpz_t coefficient)
156 if(!COEFF_IS_MPZ(*coefficient))
157 {
158 long coeff= fmpz_get_si(coefficient);
159 return CanonicalForm(coeff);
160 }
161 else
162 {
163 mpz_t gmp_val;
164 mpz_init(gmp_val);
165 fmpz_get_mpz(gmp_val, coefficient);
167 return result;
168 }
169}
170
172convertFmpz_poly_t2FacCF (const fmpz_poly_t poly, const Variable& x)
173{
175 fmpz* coeff;
176 for (int i= 0; i < fmpz_poly_length (poly); i++)
177 {
178 coeff= fmpz_poly_get_coeff_ptr(poly, i);
179 if (!fmpz_is_zero(coeff))
180 result += convertFmpz2CF(coeff)*power (x,i);
181 }
182 return result;
183}
184
185void
187{
188 bool save_sym_ff= isOn(SW_SYMMETRIC_FF);
189 if (save_sym_ff) Off(SW_SYMMETRIC_FF);
190 nmod_poly_init2(result, getCharacteristic(), degree (f)+1);
191 for (CFIterator i= f; i.hasTerms(); i++)
192 {
193 CanonicalForm c= i.coeff();
194 if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic();
195 if (!c.isImm())
196 { //This case will never happen if the characteristic is in fact a prime
197 // number, since all coefficients are represented as immediates
198 printf("convertCF2nmod_poly_t: coefficient not immediate!, char=%d\n",
200 }
201 else
202 nmod_poly_set_coeff_ui (result, i.exp(), c.intval());
203 }
204 if (save_sym_ff) On(SW_SYMMETRIC_FF);
205}
206
208convertnmod_poly_t2FacCF(const nmod_poly_t poly, const Variable& x)
209{
211 for (int i= 0; i < nmod_poly_length(poly); i++)
212 {
213 ulong coeff= nmod_poly_get_coeff_ui(poly, i);
214 if (coeff != 0)
215 result += CanonicalForm ((long)coeff)*power (x,i);
216 }
217 return result;
218}
219
221{
222 //ASSERT (isOn (SW_RATIONAL), "expected rational");
223 if (f.isImm ())
224 {
225 fmpq_set_si(result, f.intval(), 1);
226 }
227 else if(f.inQ())
228 {
229 InternalCF *fi=f.getval();
230 if (fi->levelcoeff() == RationalDomain)
231 {
232 fmpz_set_mpz(fmpq_numref(result), InternalRational::MPQNUM( fi ));
233 fmpz_set_mpz(fmpq_denref(result), InternalRational::MPQDEN( fi ));
234 }
235 else
236 {
237 mpz_t gmp_val;
238 gmp_numerator (f, gmp_val);
239 fmpz_set_mpz (fmpq_numref (result), gmp_val);
240 mpz_clear (gmp_val);
241 gmp_denominator (f, gmp_val);
242 fmpz_set_mpz (fmpq_denref (result), gmp_val);
243 mpz_clear (gmp_val);
244 }
245 fi->deleteObject();
246 }
247 else if(f.inZ()) /* and not isImm() */
248 {
249 InternalInteger *fi=(InternalInteger*)f.getval();
250 fmpz_set_mpz (fmpq_numref (result), fi->thempi);
251 fmpz_one(fmpq_denref(result));
252 fi->deleteObject();
253 }
254 else
255 {
256 printf("wrong type\n");
257 }
258}
259
261{
262 bool isRat= isOn (SW_RATIONAL);
263 if (!isRat) On (SW_RATIONAL);
265 if (fmpz_is_one(fmpq_denref(q)))
266 {
267 if (fmpz_fits_si(fmpq_numref(q)))
268 {
269 long i=fmpz_get_si(fmpq_numref(q));
270 if (!isRat) Off (SW_RATIONAL);
271 return CanonicalForm(i);
272 }
273 mpz_t nnum;
274 mpz_init (nnum);
275 fmpz_get_mpz (nnum, fmpq_numref (q));
277 if (!isRat) Off (SW_RATIONAL);
278 return result;
279 }
280
282 mpz_t nnum, nden;
283 mpz_init (nnum);
284 mpz_init (nden);
285 fmpz_get_mpz (nnum, fmpq_numref (q));
286 fmpz_get_mpz (nden, fmpq_denref (q));
287
288 result= CanonicalForm( CFFactory::rational( nnum, nden, false));
289 if (!isRat) Off (SW_RATIONAL);
290 return result;
291}
292
294convertFmpq_poly_t2FacCF (const fmpq_poly_t p, const Variable& x)
295{
297 fmpq_t coeff;
298 long n= p->length;
299 for (long i= 0; i < n; i++)
300 {
301 fmpq_init (coeff);
302 fmpq_poly_get_coeff_fmpq (coeff, p, i);
303 if (fmpq_is_zero (coeff))
304 {
305 fmpq_clear (coeff);
306 continue;
307 }
308 result += convertFmpq2CF (coeff)*power (x, i);
309 fmpq_clear (coeff);
310 }
311 return result;
312}
313
315{
316 for (CFIterator i= f; i.hasTerms(); i++)
317 convertCF2initFmpz (&result[i.exp()], i.coeff()); // assumes initialized
318}
319
321{
322 bool isRat= isOn (SW_RATIONAL);
323 if (!isRat)
324 On (SW_RATIONAL);
325
326 fmpq_poly_init2 (result, degree (f)+1);
327 _fmpq_poly_set_length (result, degree (f) + 1);
329 convertFacCF2Fmpz_array (fmpq_poly_numref (result), f*den);
330 convertCF2initFmpz (fmpq_poly_denref (result), den); // assumes initialized
331
332 if (!isRat)
334}
335
337convertFLINTnmod_poly_factor2FacCFFList (const nmod_poly_factor_t fac,
338 const mp_limb_t leadingCoeff,
339 const Variable& x
340 )
341{
343 if (leadingCoeff != 1)
344 result.insert (CFFactor (CanonicalForm ((long) leadingCoeff), 1));
345
346 long i;
347
348 for (i = 0; i < fac->num; i++)
350 (nmod_poly_t &)fac->p[i],x),
351 fac->exp[i]));
352 return result;
353}
354
355#if __FLINT_RELEASE >= 20503
358 const fmpz_poly_factor_t fac, ///< [in] a nmod_poly_factor_t
359 const Variable& x ///< [in] variable the result should
360 ///< have
361 )
362
363{
365 long i;
366
367 result.append (CFFactor(convertFmpz2CF(&fac->c),1));
368
369 for (i = 0; i < fac->num; i++)
371 (fmpz_poly_t &)fac->p[i],x),
372 fac->exp[i]));
373 return result;
374}
375#endif
376
377#if __FLINT_RELEASE >= 20400
379convertFLINTFq_nmod_poly_factor2FacCFFList (const fq_nmod_poly_factor_t fac,
380 const Variable& x, const Variable& alpha,
381 const fq_nmod_ctx_t fq_con
382 )
383{
385
386 long i;
387
388 for (i = 0; i < fac->num; i++)
390 (fq_nmod_poly_t &)fac->poly[i], x, alpha, fq_con),
391 fac->exp[i]));
392 return result;
393}
394#endif
395
396void
398 const fmpz_t p)
399{
400 #if (__FLINT_RELEASE >= 20700)
401 fmpz_mod_ctx_t ctx;
402 fmpz_mod_ctx_init(ctx,p);
403 fmpz_mod_poly_init2 (result, degree (f) + 1, ctx);
404 #else
405 fmpz_mod_poly_init2 (result, p, degree (f) + 1);
406 #endif
407 fmpz_poly_t buf;
409 #if (__FLINT_RELEASE >= 20700)
410 fmpz_mod_poly_set_fmpz_poly (result, buf, ctx);
411 fmpz_mod_ctx_clear(ctx);
412 #else
413 fmpz_mod_poly_set_fmpz_poly (result, buf);
414 #endif
415 fmpz_poly_clear (buf);
416}
417
419convertFmpz_mod_poly_t2FacCF (const fmpz_mod_poly_t poly, const Variable& x,
420 const modpk& b)
421{
422 fmpz_poly_t buf;
423 fmpz_poly_init (buf);
424 #if (__FLINT_RELEASE >= 20700)
425 fmpz_t FLINTp;
426 fmpz_init (FLINTp);
427 convertCF2initFmpz (FLINTp, b.getpk()); // assumes initialized
428 fmpz_mod_ctx_t ctx;
429 fmpz_mod_ctx_init(ctx,FLINTp);
430 fmpz_clear(FLINTp);
431 fmpz_mod_poly_get_fmpz_poly (buf, poly, ctx);
432 #else
433 fmpz_mod_poly_get_fmpz_poly (buf, poly);
434 #endif
436 fmpz_poly_clear (buf);
437 return b (result);
438}
439
440#if __FLINT_RELEASE >= 20400
441void
443 const fq_nmod_ctx_t ctx)
444{
445 bool save_sym_ff= isOn (SW_SYMMETRIC_FF);
446 if (save_sym_ff) Off (SW_SYMMETRIC_FF);
447 #if __FLINT_RELEASE >= 20503
448 nmod_poly_t res;
450 #endif
451 for (CFIterator i= f; i.hasTerms(); i++)
452 {
453 CanonicalForm c= i.coeff();
454 if (!c.isImm()) c=c.mapinto(); //c%= getCharacteristic();
455 if (!c.isImm())
456 { //This case will never happen if the characteristic is in fact a prime
457 // number, since all coefficients are represented as immediates
458 printf("convertFacCF2Fq_nmod_t: coefficient not immediate!, char=%d\n",
460 }
461 else
462 {
463 STICKYASSERT (i.exp() <= fq_nmod_ctx_degree(ctx), "convertFacCF2Fq_nmod_t: element is not reduced");
464 #if __FLINT_RELEASE >= 20503
465 nmod_poly_set_coeff_ui (res, i.exp(), c.intval());
466 #else
467 nmod_poly_set_coeff_ui (result, i.exp(), c.intval());
468 #endif
469 }
470 }
471 #if __FLINT_RELEASE >= 20503
472 fq_nmod_init(result,ctx);
473 fq_nmod_set_nmod_poly(result,res,ctx);
474 #endif
475 if (save_sym_ff) On (SW_SYMMETRIC_FF);
476}
477
479convertFq_nmod_t2FacCF (const fq_nmod_t poly, const Variable& alpha, const fq_nmod_ctx_t /*ctx*/)
480{
481 return convertnmod_poly_t2FacCF (poly, alpha);
482}
483
484void
485convertFacCF2Fq_t (fq_t result, const CanonicalForm& f, const fq_ctx_t ctx)
486{
487 fmpz_poly_init2 (result, fq_ctx_degree(ctx));
488 _fmpz_poly_set_length(result, fq_ctx_degree(ctx));
489
490 for (CFIterator i= f; i.hasTerms(); i++)
491 {
492 ASSERT(i.exp() < result->length, "input is not reduced");
493 convertCF2initFmpz (fmpz_poly_get_coeff_ptr(result, i.exp()), i.coeff()); // assumes initialized
494 }
495
496 _fmpz_vec_scalar_mod_fmpz (result->coeffs, result->coeffs, result->length,
497 fq_ctx_prime(ctx));
498
499 _fmpz_poly_normalise (result);
500}
501
503convertFq_t2FacCF (const fq_t poly, const Variable& alpha)
504{
505 return convertFmpz_poly_t2FacCF (poly, alpha);
506}
507
508void
510 const fq_ctx_t ctx)
511{
512 fq_poly_init2 (result, degree (f)+1, ctx);
513
514 _fq_poly_set_length (result, degree (f) + 1, ctx);
515
516 for (CFIterator i= f; i.hasTerms(); i++)
517 {
518 fq_t buf;
519 convertFacCF2Fq_t (buf, i.coeff(), ctx);
520 fq_poly_set_coeff (result, i.exp(), buf, ctx);
521 fq_clear (buf, ctx);
522 }
523}
524
525void
527 const fq_nmod_ctx_t ctx)
528{
529 fq_nmod_poly_init2 (result, degree (f)+1, ctx);
530 _fq_nmod_poly_set_length (result, degree (f) + 1, ctx);
531 fq_nmod_t buf;
532 fq_nmod_init2 (buf, ctx);
533 for (CFIterator i= f; i.hasTerms(); i++)
534 {
535 convertFacCF2Fq_nmod_t (buf, i.coeff(), ctx);
536 fq_nmod_poly_set_coeff (result, i.exp(), buf, ctx);
537 fq_nmod_zero (buf, ctx);
538 }
539 fq_nmod_clear (buf, ctx);
540}
541
543convertFq_poly_t2FacCF (const fq_poly_t p, const Variable& x,
544 const Variable& alpha, const fq_ctx_t ctx)
545{
547 fq_t coeff;
548 long n= fq_poly_length (p, ctx);
549 fq_init2 (coeff, ctx);
550 for (long i= 0; i < n; i++)
551 {
552 fq_poly_get_coeff (coeff, p, i, ctx);
553 if (fq_is_zero (coeff, ctx))
554 continue;
555 result += convertFq_t2FacCF (coeff, alpha)*power (x, i);
556 fq_zero (coeff, ctx);
557 }
558 fq_clear (coeff, ctx);
559
560 return result;
561}
562
564convertFq_nmod_poly_t2FacCF (const fq_nmod_poly_t p, const Variable& x,
565 const Variable& alpha, const fq_nmod_ctx_t ctx)
566{
568 fq_nmod_t coeff;
569 long n= fq_nmod_poly_length (p, ctx);
570 fq_nmod_init2 (coeff, ctx);
571 for (long i= 0; i < n; i++)
572 {
573 fq_nmod_poly_get_coeff (coeff, p, i, ctx);
574 if (fq_nmod_is_zero (coeff, ctx))
575 continue;
576 result += convertFq_nmod_t2FacCF (coeff, alpha, ctx)*power (x, i);
577 fq_nmod_zero (coeff, ctx);
578 }
579 fq_nmod_clear (coeff, ctx);
580
581 return result;
582}
583#endif
584
585void convertFacCFMatrix2Fmpz_mat_t (fmpz_mat_t M, const CFMatrix &m)
586{
587 fmpz_mat_init (M, (long) m.rows(), (long) m.columns());
588
589 int i,j;
590 for(i=m.rows();i>0;i--)
591 {
592 for(j=m.columns();j>0;j--)
593 {
594 convertCF2initFmpz (fmpz_mat_entry (M,i-1,j-1), m(i,j)); // assumes initialized
595 }
596 }
597}
599{
600 CFMatrix *res=new CFMatrix(fmpz_mat_nrows (m),fmpz_mat_ncols (m));
601 int i,j;
602 for(i=res->rows();i>0;i--)
603 {
604 for(j=res->columns();j>0;j--)
605 {
606 (*res)(i,j)=convertFmpz2CF(fmpz_mat_entry (m,i-1,j-1));
607 }
608 }
609 return res;
610}
611
612void convertFacCFMatrix2nmod_mat_t (nmod_mat_t M, const CFMatrix &m)
613{
614 nmod_mat_init (M, (long) m.rows(), (long) m.columns(), getCharacteristic());
615
616 bool save_sym_ff= isOn (SW_SYMMETRIC_FF);
617 if (save_sym_ff) Off (SW_SYMMETRIC_FF);
618 int i,j;
619 for(i=m.rows();i>0;i--)
620 {
621 for(j=m.columns();j>0;j--)
622 {
623 if(!(m(i,j)).isImm()) printf("convertFacCFMatrix2FLINTmat_zz_p: not imm.\n");
624 nmod_mat_entry (M,i-1,j-1)= (m(i,j)).intval();
625 }
626 }
627 if (save_sym_ff) On (SW_SYMMETRIC_FF);
628}
629
631{
632 CFMatrix *res=new CFMatrix(nmod_mat_nrows (m), nmod_mat_ncols (m));
633 int i,j;
634 for(i=res->rows();i>0;i--)
635 {
636 for(j=res->columns();j>0;j--)
637 {
638 (*res)(i,j)=CanonicalForm((long) nmod_mat_entry (m, i-1, j-1));
639 }
640 }
641 return res;
642}
643
644#if __FLINT_RELEASE >= 20400
645void
647 const fq_nmod_ctx_t fq_con, const CFMatrix &m)
648{
649 fq_nmod_mat_init (M, (long) m.rows(), (long) m.columns(), fq_con);
650 int i,j;
651 for(i=m.rows();i>0;i--)
652 {
653 for(j=m.columns();j>0;j--)
654 {
655 convertFacCF2nmod_poly_t (M->rows[i-1]+j-1, m (i,j));
656 }
657 }
658}
659
662 const fq_nmod_ctx_t& fq_con,
663 const Variable& alpha)
664{
665 CFMatrix *res=new CFMatrix(fq_nmod_mat_nrows (m, fq_con),
666 fq_nmod_mat_ncols (m, fq_con));
667 int i,j;
668 for(i=res->rows();i>0;i--)
669 {
670 for(j=res->columns();j>0;j--)
671 {
672 (*res)(i,j)=convertFq_nmod_t2FacCF (fq_nmod_mat_entry (m, i-1, j-1),
673 alpha, fq_con);
674 }
675 }
676 return res;
677}
678#endif
679#if __FLINT_RELEASE >= 20503
680static void convFlint_RecPP ( const CanonicalForm & f, ulong * exp, nmod_mpoly_t result, nmod_mpoly_ctx_t ctx, int N )
681{
682 // assume f!=0
683 if ( ! f.inCoeffDomain() )
684 {
685 int l = f.level();
686 for ( CFIterator i = f; i.hasTerms(); i++ )
687 {
688 exp[N-l] = i.exp();
689 convFlint_RecPP( i.coeff(), exp, result, ctx, N );
690 }
691 exp[N-l] = 0;
692 }
693 else
694 {
695 int c=f.intval(); // with Off(SW_SYMMETRIC_FF): 0<=c<p
696 nmod_mpoly_push_term_ui_ui(result,c,exp,ctx);
697 }
698}
699
700static void convFlint_RecPP ( const CanonicalForm & f, ulong * exp, fmpq_mpoly_t result, fmpq_mpoly_ctx_t ctx, int N )
701{
702 // assume f!=0
703 if ( ! f.inBaseDomain() )
704 {
705 int l = f.level();
706 for ( CFIterator i = f; i.hasTerms(); i++ )
707 {
708 exp[N-l] = i.exp();
709 convFlint_RecPP( i.coeff(), exp, result, ctx, N );
710 }
711 exp[N-l] = 0;
712 }
713 else
714 {
715 fmpq_t c;
716 fmpq_init(c);
717 convertCF2Fmpq(c,f);
718 fmpq_mpoly_push_term_fmpq_ui(result,c,exp,ctx);
719 fmpq_clear(c);
720 }
721}
722
723static void convFlint_RecPP ( const CanonicalForm & f, ulong * exp, fmpz_mpoly_t result, fmpz_mpoly_ctx_t ctx, int N )
724{
725 // assume f!=0
726 if ( ! f.inBaseDomain() )
727 {
728 int l = f.level();
729 for ( CFIterator i = f; i.hasTerms(); i++ )
730 {
731 exp[N-l] = i.exp();
732 convFlint_RecPP( i.coeff(), exp, result, ctx, N );
733 }
734 exp[N-l] = 0;
735 }
736 else
737 {
738 fmpz_t c;
739 fmpz_init(c);
740 convertCF2initFmpz(c,f); // assumes initialized
741 fmpz_mpoly_push_term_fmpz_ui(result,c,exp,ctx);
742 fmpz_clear(c);
743 }
744}
745
746#if __FLINT_RELEASE >= 20700
747static void convFlint_RecPP ( const CanonicalForm & f, ulong * exp, fq_nmod_mpoly_t result, const fq_nmod_mpoly_ctx_t ctx, int N, const fq_nmod_ctx_t fq_ctx )
748{
749 // assume f!=0
750 if ( ! f.inCoeffDomain() )
751 {
752 int l = f.level();
753 for ( CFIterator i = f; i.hasTerms(); i++ )
754 {
755 exp[N-l] = i.exp();
756 convFlint_RecPP( i.coeff(), exp, result, ctx, N, fq_ctx );
757 }
758 exp[N-l] = 0;
759 }
760 else
761 {
762 fq_nmod_t c;
763 convertFacCF2Fq_nmod_t (c, f, fq_ctx);
764 fq_nmod_mpoly_push_term_fq_nmod_ui(result,c,exp,ctx);
765 }
766}
767#endif
768
769void convFactoryPFlintMP ( const CanonicalForm & f, nmod_mpoly_t res, nmod_mpoly_ctx_t ctx, int N )
770{
771 if (f.isZero()) return;
772 ulong * exp = (ulong*)Alloc(N*sizeof(ulong));
773 memset(exp,0,N*sizeof(ulong));
774 bool save_sym_ff= isOn (SW_SYMMETRIC_FF);
775 if (save_sym_ff) Off (SW_SYMMETRIC_FF);
776 convFlint_RecPP( f, exp, res, ctx, N );
777 if (save_sym_ff) On(SW_SYMMETRIC_FF);
778 Free(exp,N*sizeof(ulong));
779}
780
781void convFactoryPFlintMP ( const CanonicalForm & f, fmpq_mpoly_t res, fmpq_mpoly_ctx_t ctx, int N )
782{
783 if (f.isZero()) return;
784 ulong * exp = (ulong*)Alloc(N*sizeof(ulong));
785 memset(exp,0,N*sizeof(ulong));
786 convFlint_RecPP( f, exp, res, ctx, N );
787 fmpq_mpoly_reduce(res,ctx);
788 Free(exp,N*sizeof(ulong));
789}
790
791void convFactoryPFlintMP ( const CanonicalForm & f, fmpz_mpoly_t res, fmpz_mpoly_ctx_t ctx, int N )
792{
793 if (f.isZero()) return;
794 ulong * exp = (ulong*)Alloc(N*sizeof(ulong));
795 memset(exp,0,N*sizeof(ulong));
796 convFlint_RecPP( f, exp, res, ctx, N );
797 //fmpz_mpoly_reduce(res,ctx);
798 Free(exp,N*sizeof(ulong));
799}
800
801#if __FLINT_RELEASE >= 20700
802void convFactoryPFlintMP ( const CanonicalForm & f, fq_nmod_mpoly_t res, fq_nmod_mpoly_ctx_t ctx, int N, fq_nmod_ctx_t fq_ctx )
803{
804 if (f.isZero()) return;
805 ulong * exp = (ulong*)Alloc(N*sizeof(ulong));
806 memset(exp,0,N*sizeof(ulong));
807 bool save_sym_ff= isOn (SW_SYMMETRIC_FF);
808 if (save_sym_ff) Off (SW_SYMMETRIC_FF);
809 convFlint_RecPP( f, exp, res, ctx, N, fq_ctx );
810 if (save_sym_ff) On(SW_SYMMETRIC_FF);
811 Free(exp,N*sizeof(ulong));
812}
813#endif
814
815CanonicalForm convFlintMPFactoryP(nmod_mpoly_t f, nmod_mpoly_ctx_t ctx, int N)
816{
818 int d=nmod_mpoly_length(f,ctx)-1;
819 ulong* exp=(ulong*)Alloc(N*sizeof(ulong));
820 for(int i=d; i>=0; i--)
821 {
822 ulong c=nmod_mpoly_get_term_coeff_ui(f,i,ctx);
823 nmod_mpoly_get_term_exp_ui(exp,f,i,ctx);
824 CanonicalForm term=(int)c;
825 for ( int i = 0; i <N; i++ )
826 {
827 if (exp[i]!=0) term*=CanonicalForm( Variable( N-i ), exp[i] );
828 }
829 result+=term;
830 }
831 Free(exp,N*sizeof(ulong));
832 return result;
833}
834
835CanonicalForm convFlintMPFactoryP(fmpq_mpoly_t f, fmpq_mpoly_ctx_t ctx, int N)
836{
838 int d=fmpq_mpoly_length(f,ctx)-1;
839 ulong* exp=(ulong*)Alloc(N*sizeof(ulong));
840 fmpq_t c;
841 fmpq_init(c);
842 for(int i=d; i>=0; i--)
843 {
844 fmpq_mpoly_get_term_coeff_fmpq(c,f,i,ctx);
845 fmpq_mpoly_get_term_exp_ui(exp,f,i,ctx);
847 for ( int i = 0; i <N; i++ )
848 {
849 if (exp[i]!=0) term*=CanonicalForm( Variable( N-i ), exp[i] );
850 }
851 result+=term;
852 }
853 fmpq_clear(c);
854 Free(exp,N*sizeof(ulong));
855 return result;
856}
857
858CanonicalForm convFlintMPFactoryP(fmpz_mpoly_t f, fmpz_mpoly_ctx_t ctx, int N)
859{
861 int d=fmpz_mpoly_length(f,ctx)-1;
862 ulong* exp=(ulong*)Alloc(N*sizeof(ulong));
863 fmpz_t c;
864 fmpz_init(c);
865 for(int i=d; i>=0; i--)
866 {
867 fmpz_mpoly_get_term_coeff_fmpz(c,f,i,ctx);
868 fmpz_mpoly_get_term_exp_ui(exp,f,i,ctx);
870 for ( int i = 0; i <N; i++ )
871 {
872 if (exp[i]!=0) term*=CanonicalForm( Variable( N-i ), exp[i] );
873 }
874 result+=term;
875 }
876 fmpz_clear(c);
877 Free(exp,N*sizeof(ulong));
878 return result;
879}
880
881CanonicalForm mulFlintMP_Zp(const CanonicalForm& F,int lF, const CanonicalForm& G, int lG,int m)
882{
883 int bits=SI_LOG2(m)+1;
884 int N=F.level();
885 nmod_mpoly_ctx_t ctx;
886 nmod_mpoly_ctx_init(ctx,N,ORD_LEX,getCharacteristic());
887 nmod_mpoly_t f,g,res;
888 nmod_mpoly_init3(f,lF,bits,ctx);
889 nmod_mpoly_init3(g,lG,bits,ctx);
890 convFactoryPFlintMP(F,f,ctx,N);
891 convFactoryPFlintMP(G,g,ctx,N);
892 nmod_mpoly_init(res,ctx);
893 nmod_mpoly_mul(res,f,g,ctx);
894 nmod_mpoly_clear(g,ctx);
895 nmod_mpoly_clear(f,ctx);
896 CanonicalForm RES=convFlintMPFactoryP(res,ctx,N);
897 nmod_mpoly_clear(res,ctx);
898 nmod_mpoly_ctx_clear(ctx);
899 return RES;
900}
901
902CanonicalForm mulFlintMP_QQ(const CanonicalForm& F,int lF, const CanonicalForm& G, int lG, int m)
903{
904 int bits=SI_LOG2(m)+1;
905 int N=F.level();
906 fmpq_mpoly_ctx_t ctx;
907 fmpq_mpoly_ctx_init(ctx,N,ORD_LEX);
908 fmpq_mpoly_t f,g,res;
909 fmpq_mpoly_init3(f,lF,bits,ctx);
910 fmpq_mpoly_init3(g,lG,bits,ctx);
911 convFactoryPFlintMP(F,f,ctx,N);
912 convFactoryPFlintMP(G,g,ctx,N);
913 fmpq_mpoly_init(res,ctx);
914 fmpq_mpoly_mul(res,f,g,ctx);
915 fmpq_mpoly_clear(g,ctx);
916 fmpq_mpoly_clear(f,ctx);
917 CanonicalForm RES=convFlintMPFactoryP(res,ctx,N);
918 fmpq_mpoly_clear(res,ctx);
919 fmpq_mpoly_ctx_clear(ctx);
920 return RES;
921}
922
923CanonicalForm gcdFlintMP_Zp(const CanonicalForm& F, const CanonicalForm& G)
924{
925 int N=F.level();
926 int lf,lg,m=1<<MPOLY_MIN_BITS;
927 lf=size_maxexp(F,m);
928 lg=size_maxexp(G,m);
929 int bits=SI_LOG2(m)+1;
930 nmod_mpoly_ctx_t ctx;
931 nmod_mpoly_ctx_init(ctx,N,ORD_LEX,getCharacteristic());
932 nmod_mpoly_t f,g,res;
933 nmod_mpoly_init3(f,lf,bits,ctx);
934 nmod_mpoly_init3(g,lg,bits,ctx);
935 convFactoryPFlintMP(F,f,ctx,N);
936 convFactoryPFlintMP(G,g,ctx,N);
937 nmod_mpoly_init(res,ctx);
938 int ok=nmod_mpoly_gcd(res,f,g,ctx);
939 nmod_mpoly_clear(g,ctx);
940 nmod_mpoly_clear(f,ctx);
941 CanonicalForm RES=1;
942 if (ok)
943 {
944 RES=convFlintMPFactoryP(res,ctx,N);
945 }
946 nmod_mpoly_clear(res,ctx);
947 nmod_mpoly_ctx_clear(ctx);
948 return RES;
949}
950
951static CanonicalForm b_content ( const CanonicalForm & f )
952{
953 if ( f.inCoeffDomain() )
954 return f;
955 else
956 {
959 for ( i = f; i.hasTerms() && (!result.isOne()); i++ )
960 result=bgcd( b_content(i.coeff()) , result );
961 return result;
962 }
963}
964
965
966CanonicalForm gcdFlintMP_QQ(const CanonicalForm& F, const CanonicalForm& G)
967{
968 int N=F.level();
969 fmpq_mpoly_ctx_t ctx;
970 fmpq_mpoly_ctx_init(ctx,N,ORD_LEX);
971 fmpq_mpoly_t f,g,res;
972 fmpq_mpoly_init(f,ctx);
973 fmpq_mpoly_init(g,ctx);
974 convFactoryPFlintMP(F,f,ctx,N);
975 convFactoryPFlintMP(G,g,ctx,N);
976 fmpq_mpoly_init(res,ctx);
977 int ok=fmpq_mpoly_gcd(res,f,g,ctx);
978 fmpq_mpoly_clear(g,ctx);
979 fmpq_mpoly_clear(f,ctx);
980 CanonicalForm RES=1;
981 if (ok)
982 {
983 // Flint normalizes the gcd to be monic.
984 // Singular wants a gcd defined over ZZ that is primitive and has a positive leading coeff.
985 if (!fmpq_mpoly_is_zero(res, ctx))
986 {
987 fmpq_t content;
988 fmpq_init(content);
989 fmpq_mpoly_content(content, res, ctx);
990 fmpq_mpoly_scalar_div_fmpq(res, res, content, ctx);
991 fmpq_clear(content);
992 }
993 RES=convFlintMPFactoryP(res,ctx,N);
994 // gcd(2x,4x) should be 2x, so RES should also have the gcd(lc(F),lc(G))
995 RES*=bgcd(b_content(F),b_content(G));
996 }
997 fmpq_mpoly_clear(res,ctx);
998 fmpq_mpoly_ctx_clear(ctx);
999 return RES;
1000}
1001
1002#endif // FLINT 2.5.3
1003
1004#if __FLINT_RELEASE >= 20700
1005CFFList
1006convertFLINTFq_nmod_mpoly_factor2FacCFFList (
1007 fq_nmod_mpoly_factor_t fac,
1008 const fq_nmod_mpoly_ctx_t& ctx,
1009 const int N,
1010 const fq_nmod_ctx_t& fq_ctx,
1011 const Variable alpha)
1012{
1014
1015 long i;
1016
1017 fq_nmod_t c;
1018 fq_nmod_init(c,fq_ctx);
1019 fq_nmod_mpoly_factor_get_constant_fq_nmod(c,fac,ctx);
1020 result.append(CFFactor(convertFq_nmod_t2FacCF(c,alpha,fq_ctx),1));
1021 fq_nmod_clear(c,fq_ctx);
1022
1023 fq_nmod_mpoly_t p;
1024 fq_nmod_mpoly_init(p,ctx);
1025 long exp;
1026 for (i = 0; i < fac->num; i++)
1027 {
1028 fq_nmod_mpoly_factor_get_base(p,fac,i,ctx);
1029 exp=fq_nmod_mpoly_factor_get_exp_si(fac,i,ctx);
1030 result.append (CFFactor (convertFq_nmod_mpoly_t2FacCF (
1031 p,ctx,N,fq_ctx,alpha), exp));
1032 }
1033 fq_nmod_mpoly_clear(p,ctx);
1034 return result;
1035}
1036
1037void
1038convertFacCF2Fq_nmod_mpoly_t (fq_nmod_mpoly_t result,
1039 const CanonicalForm& f,
1040 const fq_nmod_mpoly_ctx_t ctx,
1041 const int N,
1042 const fq_nmod_ctx_t fq_ctx
1043 )
1044{
1045 if (f.isZero()) return;
1046 ulong * exp = (ulong*)Alloc(N*sizeof(ulong));
1047 memset(exp,0,N*sizeof(ulong));
1048 convFlint_RecPP( f, exp, result, ctx, N, fq_ctx );
1049 Free(exp,N*sizeof(ulong));
1050}
1051
1053convertFq_nmod_mpoly_t2FacCF (const fq_nmod_mpoly_t f,
1054 const fq_nmod_mpoly_ctx_t& ctx,
1055 const int N,
1056 const fq_nmod_ctx_t& fq_ctx,
1057 const Variable alpha)
1058{
1060 int d=fq_nmod_mpoly_length(f,ctx)-1;
1061 ulong* exp=(ulong*)Alloc(N*sizeof(ulong));
1062 fq_nmod_t c;
1063 fq_nmod_init(c,fq_ctx);
1064 for(int i=d; i>=0; i--)
1065 {
1066 fq_nmod_mpoly_get_term_coeff_fq_nmod(c,f,i,ctx);
1067 fq_nmod_mpoly_get_term_exp_ui(exp,f,i,ctx);
1069 for ( int i = 0; i <N; i++ )
1070 {
1071 if (exp[i]!=0) term*=CanonicalForm( Variable( N-i ), exp[i] );
1072 }
1073 result+=term;
1074 }
1075 Free(exp,N*sizeof(ulong));
1076 return result;
1077}
1078
1079#endif
1080#endif // FLINT
void convertFacCFMatrix2Fmpz_mat_t(fmpz_mat_t M, const CFMatrix &m)
conversion of a factory matrix over Z to a fmpz_mat_t
CanonicalForm convertFq_poly_t2FacCF(const fq_poly_t p, const Variable &x, const Variable &alpha, const fq_ctx_t ctx)
conversion of a FLINT poly over Fq (for non-word size p) to a CanonicalForm with alg....
CFMatrix * convertFmpz_mat_t2FacCFMatrix(const fmpz_mat_t m)
conversion of a FLINT matrix over Z to a factory matrix
void convertFacCF2Fq_t(fq_t result, const CanonicalForm &f, const fq_ctx_t ctx)
conversion of a factory element of F_q (for non-word size p) to a FLINT fq_t
CFMatrix * convertNmod_mat_t2FacCFMatrix(const nmod_mat_t m)
conversion of a FLINT matrix over Z/p to a factory matrix
#define Free(A, L)
void convertFacCFMatrix2nmod_mat_t(nmod_mat_t M, const CFMatrix &m)
conversion of a factory matrix over Z/p to a nmod_mat_t
#define Alloc(L)
CanonicalForm convertFq_nmod_poly_t2FacCF(const fq_nmod_poly_t p, const Variable &x, const Variable &alpha, const fq_nmod_ctx_t ctx)
conversion of a FLINT poly over Fq to a CanonicalForm with alg. variable alpha and polynomial variabl...
CanonicalForm convertFmpz2CF(const fmpz_t coefficient)
conversion of a FLINT integer to CanonicalForm
CanonicalForm convertFq_t2FacCF(const fq_t poly, const Variable &alpha)
conversion of a FLINT element of F_q with non-word size p to a CanonicalForm with alg....
void convertFacCF2Fq_nmod_t(fq_nmod_t result, const CanonicalForm &f, const fq_nmod_ctx_t ctx)
conversion of a factory element of F_q to a FLINT fq_nmod_t, does not do any memory allocation for po...
CanonicalForm convertFmpq_poly_t2FacCF(const fmpq_poly_t p, const Variable &x)
conversion of a FLINT poly over Q to CanonicalForm
void convertFacCFMatrix2Fq_nmod_mat_t(fq_nmod_mat_t M, const fq_nmod_ctx_t fq_con, const CFMatrix &m)
conversion of a factory matrix over F_q to a fq_nmod_mat_t
CanonicalForm convertFmpz_mod_poly_t2FacCF(const fmpz_mod_poly_t poly, const Variable &x, const modpk &b)
conversion of a FLINT poly over Z/p (for non word size p) to a CanonicalForm over Z
void convertFacCF2Fmpz_array(fmpz *result, const CanonicalForm &f)
void convertFacCF2nmod_poly_t(nmod_poly_t result, const CanonicalForm &f)
conversion of a factory univariate polynomials over Z/p (for word size p) to nmod_poly_t
CFFList convertFLINTFq_nmod_poly_factor2FacCFFList(const fq_nmod_poly_factor_t fac, const Variable &x, const Variable &alpha, const fq_nmod_ctx_t fq_con)
conversion of a FLINT factorization over Fq (for word size p) to a CFFList
void convertCF2Fmpz(fmpz_t result, const CanonicalForm &f)
conversion of a factory integer to fmpz_t
void convertCF2Fmpq(fmpq_t result, const CanonicalForm &f)
conversion of a factory rationals to fmpq_t
CanonicalForm convertnmod_poly_t2FacCF(const nmod_poly_t poly, const Variable &x)
conversion of a FLINT poly over Z/p to CanonicalForm
void convertFacCF2Fmpz_mod_poly_t(fmpz_mod_poly_t result, const CanonicalForm &f, const fmpz_t p)
conversion of a factory univariate poly over Z to a FLINT poly over Z/p (for non word size p)
void convertFacCF2Fq_nmod_poly_t(fq_nmod_poly_t result, const CanonicalForm &f, const fq_nmod_ctx_t ctx)
conversion of a factory univariate poly over F_q to a FLINT fq_nmod_poly_t
CanonicalForm convertFmpz_poly_t2FacCF(const fmpz_poly_t poly, const Variable &x)
conversion of a FLINT poly over Z to CanonicalForm
CanonicalForm convertFq_nmod_t2FacCF(const fq_nmod_t poly, const Variable &alpha, const fq_nmod_ctx_t)
conversion of a FLINT element of F_q to a CanonicalForm with alg. variable alpha
CFFList convertFLINTnmod_poly_factor2FacCFFList(const nmod_poly_factor_t fac, const mp_limb_t leadingCoeff, const Variable &x)
conversion of a FLINT factorization over Z/p (for word size p) to a CFFList
CanonicalForm convertFmpq2CF(const fmpq_t q)
conversion of a FLINT rational to CanonicalForm
void convertFacCF2Fmpq_poly_t(fmpq_poly_t result, const CanonicalForm &f)
conversion of a factory univariate polynomials over Q to fmpq_poly_t
void convertFacCF2Fmpz_poly_t(fmpz_poly_t result, const CanonicalForm &f)
conversion of a factory univariate polynomial over Z to a fmpz_poly_t
void convertCF2initFmpz(fmpz_t result, const CanonicalForm &f)
conversion of a factory integer to fmpz_t(init.)
CFMatrix * convertFq_nmod_mat_t2FacCFMatrix(const fq_nmod_mat_t m, const fq_nmod_ctx_t &fq_con, const Variable &alpha)
conversion of a FLINT matrix over F_q to a factory matrix
void convertFacCF2Fq_poly_t(fq_poly_t result, const CanonicalForm &f, const fq_ctx_t ctx)
conversion of a factory univariate poly over F_q (for non-word size p) to a FLINT fq_poly_t
This file defines functions for conversion to FLINT (www.flintlib.org) and back.
CFFList convertFLINTfmpz_poly_factor2FacCFFList(const fmpz_poly_factor_t fac, const Variable &x)
conversion of a FLINT factorization over Z to a CFFList
CanonicalForm bgcd(const CanonicalForm &f, const CanonicalForm &g)
CanonicalForm bgcd ( const CanonicalForm & f, const CanonicalForm & g )
bool isOn(int sw)
switches
void On(int sw)
switches
void Off(int sw)
switches
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
Header for factory's main class CanonicalForm.
CanonicalForm FACTORY_PUBLIC content(const CanonicalForm &)
CanonicalForm content ( const CanonicalForm & f )
Definition cf_gcd.cc:603
int degree(const CanonicalForm &f)
int size_maxexp(const CanonicalForm &f, int &maxexp)
Definition cf_ops.cc:641
Matrix< CanonicalForm > CFMatrix
CanonicalForm num(const CanonicalForm &f)
CanonicalForm den(const CanonicalForm &f)
List< CFFactor > CFFList
Factor< CanonicalForm > CFFactor
int FACTORY_PUBLIC getCharacteristic()
Definition cf_char.cc:70
const CanonicalForm CFMap CFMap & N
Definition cfEzgcd.cc:56
int l
Definition cfEzgcd.cc:100
int m
Definition cfEzgcd.cc:128
int i
Definition cfEzgcd.cc:132
Variable x
Definition cfModGcd.cc:4090
int p
Definition cfModGcd.cc:4086
g
Definition cfModGcd.cc:4098
CanonicalForm b
Definition cfModGcd.cc:4111
CanonicalForm bCommonDen(const CanonicalForm &f)
CanonicalForm bCommonDen ( const CanonicalForm & f )
declarations of higher level algorithms.
#define STICKYASSERT(expression, message)
Definition cf_assert.h:64
#define ASSERT(expression, message)
Definition cf_assert.h:99
static const int SW_RATIONAL
set to 1 for computations over Q
Definition cf_defs.h:31
#define RationalDomain
Definition cf_defs.h:20
static const int SW_SYMMETRIC_FF
set to 1 for symmetric representation over F_q
Definition cf_defs.h:33
Interface to generate InternalCF's over various domains from intrinsic types or mpz_t's.
Iterators for CanonicalForm's.
FILE * f
Definition checklibs.c:9
static InternalCF * basic(int value)
Definition cf_factory.cc:61
static InternalCF * rational(long num, long den)
class to iterate through CanonicalForm's
Definition cf_iter.h:44
factory's main class
long intval() const
conversion functions
int level() const
level() returns the level of CO.
bool isImm() const
CanonicalForm mapinto() const
InternalCF()
Definition int_cf.h:55
virtual int levelcoeff() const
Definition int_cf.h:68
int deleteObject()
Definition int_cf.h:61
factory's class for integers
Definition int_int.h:56
static mpz_ptr MPQDEN(const InternalCF *const c)
Definition int_rat.h:143
static mpz_ptr MPQNUM(const InternalCF *const c)
Definition int_rat.h:138
factory's class for variables
Definition factory.h:127
class to do operations mod p^k for int's p and k
Definition fac_util.h:23
Variable alpha
return result
CanonicalForm res
Definition facAbsFact.cc:60
fq_nmod_ctx_t fq_con
Definition facHensel.cc:99
int j
Definition facHensel.cc:110
nmod_poly_init(FLINTmipo, getCharacteristic())
operations mod p^k and some other useful functions for factorization
void FACTORY_PUBLIC gmp_numerator(const CanonicalForm &f, mpz_ptr result)
Definition singext.cc:20
void FACTORY_PUBLIC gmp_denominator(const CanonicalForm &f, mpz_ptr result)
Definition singext.cc:40
utility functions for gmp
Factory's internal integers.
Factory's internal rationals.
STATIC_VAR TreeM * G
Definition janet.cc:31
gmp_float exp(const gmp_float &a)
static int SI_LOG2(int v)
Definition si_log2.h:6
int status int void * buf
Definition si_signals.h:69
helper functions for conversion to and from Singular
#define M
Definition sirandom.c:25