Go to the source code of this file.
◆ plain_spoly()
poly plain_spoly |
( |
poly | f, |
|
|
poly | g ) |
Definition at line 163 of file ringgb.cc.
164{
167 poly fm, gm;
174 return(sp);
175}
KINLINE BOOLEAN k_GetLeadTerms(const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
int ksCheckCoeff(number *a, number *b, const coeffs r)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
◆ reduce_poly_fct()
poly reduce_poly_fct |
( |
poly | p, |
|
|
ring | r ) |
Definition at line 28 of file ringgb.cc.
29{
31}
poly kFindZeroPoly(poly input_p, ring leadRing, ring tailRing)
◆ ringNF()
poly ringNF |
( |
poly | f, |
|
|
ideal | G, |
|
|
ring | r ) |
Definition at line 196 of file ringgb.cc.
197{
198
203 int c = 1;
204 while (
h !=
NULL &&
i >= 0) {
205
206
207
208
209
210
214
215
216
218 c++;
219 }
221}
#define pCopy(p)
return a copy of the poly
int findRingSolver(poly rside, ideal G, ring r)
poly plain_spoly(poly f, poly g)
◆ ringRedNF()
poly ringRedNF |
( |
poly | f, |
|
|
ideal | G, |
|
|
ring | r ) |
Definition at line 116 of file ringgb.cc.
117{
118
122 int c = 0;
124 {
125 Print(
"%d-step RedNF - g=", c);
134 }
135 c++;
136 }
138}
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
void PrintS(const char *s)
poly ringNF(poly f, ideal G, ring r)
◆ testGB()
int testGB |
( |
ideal | I, |
|
|
ideal | GI ) |
Definition at line 223 of file ringgb.cc.
223 {
230 PrintS(
"Not reduced to zero from I: ");
235 return(0);
236 }
238 }
239 PrintS(
" Yes!\nspoly --> 0?");
241 {
243 {
249 {
259 return(0);
260 }
266 }
267 }
269 {
270 PrintS(
" Yes!\nzero-spoly --> 0?");
272 {
285 return(0);
286 }
290 }
291 }
294 return(1);
295}
static BOOLEAN rField_is_Domain(const ring r)
poly plain_zero_spoly(poly h)